BIOL2107, Fall ‘23

Mendel's 1st law- the law of segregation

Mendel's First Law: Two members of a gene pair segregate from each other into the gametes, whereby one half of the gametes carries one of the traits, the other half carries the other.

Mendel's 2nd law- the law of random/independent assortment

Mendel's Second Law: During gamete formation the segregation of one gene pair is independent of all other gene pairs

Homozygous DOMINANT

Heterozygous

Homozygous recessive

YY

Homozygous DOMINANT

Homozygous recessive

Mendel's 1st law- the law of segregation

Mendel's First Law: Two members of a gene pair segregate from each other into the gametes, whereby one half of the gametes carries one of the traits, the other half carries the other.

Mendel's 2nd law- the law of random/independent assortment

Mendel's Second Law: During gamete formation the segregation of one gene pair is independent of all other gene pairs

Parental (P) generation SSH_{3} \times

F_{1} generation

(5Y) Sy

There are 9 possible genotypes and 4 possible phenotypes. The ratio of phenotypes is 9:3:3:1.

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Resulting gametes

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Resulting gametes

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Resulting gametes

a. Color of seeds (yellow or green)
b. Shape of seeds (round or wrinkled)
c. Color of pod (green or yellow)
d. Shape of pod (smooth or indented)
e. Color of flower (purple or white)

f. Position of flowers (along stem or at tip)

g. Plant height
(tall or dwarfed)

a. Color of seeds (yellow or green)
b. Shape of seeds (round or wrinkled)
c. Color of pod (green or yellow)
d. Shape of pod (smooth or indented)
e. Color of flower (purple or white)

f. Position of flowers (along stem or at tip)

g. Plant height (tall or dwarfed)

chromosome 1
chromosome 7
chromosome 5
chromosome 4
chromosome 1
chromosome 4
chromosome 4

a. Color of seeds (yellow or green)
b. Shape of seeds (round or wrinkled)
c. Color of pod (green or yellow)
d. Shape of pod (smooth or indented)
e. Color of flower (purple or white)

f. Position of flowers (along stem or at tip)
g. Plant height (tall or dwarfed)

chromosome 4
chromosome 4

Four products of meiosis

Four products of meiosis

Four products of meiosis

Full agreement with Mendel's 2nd law

(c) Courtesy of Pioneer Hi-Bred International, Inc.

Extensions to Mendelian Genetics

Incomplete dominance

Codominance

Multiple Alleles

Incomplete dominance

Extensions to Mendelian Genetics

Incomplete dominance

Codominance

Multiple Alleles

Codominance

Phenotype

Genotype
RR

White
Red/white

Rr
$r r$

Codominance

Camelias \& Cows

Extensions to Mendelian Genetics

Incomplete dominance

Codominance

Lethal Alleles

Huntington's disease

Also called: HD, Huntington's chorea

HH Hh hh
An inherited condition in which nerve cells in the brain break down over time.

It typically starts in a person's 30 s or 40 s.
Usually, Huntington's disease results in progressive movement, thinking (cognitive), and psychiatric symptoms.
No cure exists, but drugs, physical therapy, and talk therapy can help manage some symptoms.

Parent with Huntington's

?

Parent with Huntington's

$\mathrm{Hh} \times \mathrm{hh}$

Parent with Huntington's

Parent with Huntington's

$\mathrm{Hh} \times \mathrm{hh}$

Parent with Huntington's

Hh xhh

$\mathrm{Hh} \times \mathrm{Hh}$

Hh x hh

$\mathrm{Hh} \times \mathrm{Hh}$

Parent with Huntington's

Extensions to Mendelian Genetics

Incomplete dominance

Codominance

Lethal Alleles

Multiple Alleles

Homozygous DOMINANT

Heterozygous
Homozygous
recessive

Yy

yy

Homozygous DOMINANT

wild type
C C

Heterozygous

wild type (ph vpe) $C_{C}{ }^{+}$

Homozygous recessive

wild type

Huntington's disease

Also called: HD, Huntington's chorea

An inherited condition in which nerve cells in the brain break down over time.

It typically starts in a person's 30 s or 40 s.
Usually, Huntington's disease results in progressive movement, thinking (cognitive), and psychiatric symptoms.
No cure exists, but drugs, physical therapy, and talk therapy can help manage some symptoms.

Multiple Alleles

Possible genotypes	$C C, C c^{c h}, C c^{h}, C c$	$c^{c h} C^{c h}$	$c^{c h} c^{h}, c^{c h} C$	$c^{h} C^{h}, c^{h} C$	Light gray
Phenotype	Dark gray	Chinchilla	$C c$		

$c^{h} c^{h}$

Phenotype

White hairs over the entire body

Black hairs on the extremities; white hairs everywhere else

Himalayan

Chinchilla

Wild-type
Copyright 2000 John Wiley and Sons, Inc.

Phenotype

Albino

Himalayan

$c^{c h} c^{c h}$
White hair with black tips on the body

Chinchilla

Colored hairs over the entire body

Wild-type

$C^{+} C$
$\mathrm{C}^{+} \mathrm{C}^{\mathrm{ch}}$
$C^{+} C^{h}$

Wild-type

Light chinchilla

Light chinchilla with black tips

Himalayan

Figuse 4.4 Pronspypes of diterent comenonone of caides in rabbls. The aiders fom a selies, with the widitppe allele, c^{+}, dominant over all the cturer alieles and the nuli alleie, oldivinol
 ficinctilial. is partally domirant over the other, c c^{3} (immala, an

Antigens

Antibody

Some of the differences are:

| S.N. | Characteristics | Antigen | Antibody |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Molecule Type | Usually, proteins may also be
 polysaccharides, lipids or
 nucleic acids. | Proteins |
| $\mathbf{2}$ | Definition | These are substances that
 provoke an immune response. | These are Glycoproteins that
 are secreted by immune cells
 (plasma cells) in response to
 a foreign substance (antigen). |
| $\mathbf{3}$ | Effect | Cause disease or allergic | |
| reactions. | Protect the system by lysis of
 antigenic material. | | |
| $\mathbf{4}$ | Origin | Within the body or externally. | Within the body. |

Some of the differences are:

S.N.	Characteristics	Antigen	Antibody
1	Molecule Type	Usually, proteins may also be polysaccharides, lipids or nucleic acids.	Proteins
2	Definition	These are substances that provoke an immune response.	These are Glycoproteins that are secreted by immune cells (plasma cells) in response to a foreign substance (antigen).
3	Effect	Cause disease or allergic reactions.	Protect the system by lysis of antigenic material.
4	Origin	Within the body or externally.	Within the body.

Some of the differences are:

S.N.	Characteristics	Antigen	Antibody
$\mathbf{1}$	Molecule Type	Usually, proteins may also be polysaccharides, lipids or nucleic acids.	Proteins
$\mathbf{2}$	Definition	Effect	These are substances that provoke an immune response.
$\mathbf{3}$	Cause disease or allergic		
reactions.	These are Glycoproteins that are secreted by immune cells (plasma cells) in response to a foreign substance (antigen).		
$\mathbf{4}$	Origin	Within the body or externally.	Within the body.
antigenic material.			

Some of the differences are:

S.N.	Characteristics	Antigen	Antibody	
$\mathbf{1}$	Molecule Type	Usually, proteins may also be polysaccharides, lipids or nucleic acids.	Proteins	
$\mathbf{2}$	Definition	Effect	These are substances that provoke an immune response.	These are Glycoproteins that are secreted by immune cells (plasma cells) in response to a foreign substance (antigen).
$\mathbf{3}$	Cause disease or allergic			
reactions.	Protect the system by lysis of antigenic material.			
$\mathbf{4}$	Origin	Within the body or externally.	Within the body.	

Blood Cells

H - antigen $=$

A-antigen =
B - antigen =

An example of "co-dominant" alleles in humans

The
 ABO Blood Group System

Antigens: molecules, usually on the outside of a cell, that provoke an immune response

Genetics of the ABO System

A person with at least one A gene will produce the A protein

Type A

A person with at least one B gene will produce the B protein

A person with one A gene and one B gene will produce both proteins

A person with neither A nor B gene will not produce either protein

Type AB

Type 0

Potential Donors

Blood Type	Antibodies Produced			BA B	
A	$+20$	+	-	-	+
B	大\%	-	+	-	+
AB	None	+	+	+	+
0	$x \% \text { x\% }$	-	-	-	+

RECIPIENT

 Antibodies	$\begin{gathered} \text { O } \\ \text { anti-A } \\ \text { anti-B } \end{gathered}$	$\begin{gathered} \text { A } \\ \text { anti-B } \end{gathered}$	$\begin{gathered} B \\ \text { anti-A } \end{gathered}$	AB None
0	None	None	None	None
A	Clump	None	Clump	None
B	Clump	Clump	None	None
AB	Clump	Clump	Clump	None

Extensions to Mendelian Genetics

Incomplete dominance

Codominance

Lethal Alleles

Multiple Alleles

Duplicate Genes

Courtesy New York Public Library

Duplicate Genes

(b)

Summary: 15/16 triangular, $1 / 16$ ovoid
Copyright 2000 John Wiley and Sons, Inc.

Complementary Genes

Two Genes
E and B

Epistasis

(A)

(B)

(C)

Epistasis

(A) Black labrador (B_E_)

(B) Chocolate labrador (bbE_)

(C) Yellow labrador (_ _ee)

Several Interactive genes

An F2 phenotypic ratio of an initial parental cross between a BB, AA and abb, aa would be:

An F2 phenotypic ratio of an initial parental cross between a BB, AA and abb, aa would be:

A 3rd gene C, which when present in CC or Cc allows all colours that we have mentioned.. but if present as $\mathbf{c c}$, then it BLOCKS ALL coloration of fur and eye colour -giving albino

Multiple or "Poly" Genes

Figure 21.9
Biology: How Life Works
© 2014 W. H. Freeman and Company

Multiple or "Poly" Genes

>50 Genes involved directly in structural height integrity in humans

Multiple Genes affecting the same trait (Polygenes)

Human Height?

Science News

Number of genes linked to height revealed by study

Date: October 5, 2014

Source: Boston Children's Hospital
Summary: The largest genome-wide association study to date, involving more than 300 institutions and more than 250,000 subjects, roughly doubles the number of known gene regions influencing height to more than 400 . The study provides a better glimpse at the biology of height and offers a model for investigating traits and diseases caused by many common gene changes acting together.

```
Share: f v in N
```


