

Gene Regulation: Only the Beginning

Messenger RNA (mRNA)

Initiation factors

Elongation factors

Release factors

Aminoacyl tRNA synthetases

Transfer RNA (tRNA)

Ribosome (ribosomal RNA + ribosomal proteins)

Messenger RNA (mRNA)

Initiation factors

Elongation factors

Release factors

Aminoacyl tRNA synthetases

Transfer RNA (tRNA)

Ribosome (ribosomal RNA + ribosomal proteins)

"Universal" Genetic Code

AUG, which codes for the amino acid **methionine**, is called the *start* codon, which initiates the translational process.

Three of the possible codons are *stop* codons (**UAA**, **UAG**, and **UGA**), which direct the ribosomes to STOP reading the mRNA; that is, they end translation.

Initiation in prokaryotes is at any Shine–Dalgarno sequence; the mRNA can therefore be a polycistronic mRNA that codes for several polypeptides.

Monocistronic mRNA

5'- AACGCAGGAGG -7 bases- AUG/CAG/GGA/.... UGA -3'

Monocistronic mRNA

Monocistronic mRNA

Polycistronic mRNA

Monocistronic mRNA

Initiation in eukaryotes is at the 5' cap, and the first AUG is the start codon.

WHERE and HOW do you regulate the whole process?????

Pokaryotic Regulatory gene organization.... uses "OPERONS"

Regulation of Transcription in prokaryotes is a complex and multitiered phenomenon.

- Organization of gene Clusters.... relative to the origin of replication... and to each other.
- example, the lac operon.

Regulation of Transcription in prokaryotes is a complex and multitiered phenomenon.

© 2001 Sinauer Associates, Inc.

DNA \longrightarrow **RNA** maturation

Goʻlgi apparatus

Endoplasmic reticulum