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Archaeans <

Archaea constitute a domain of single-celled organisms. These
microorganisms lack cell nuclei and are therefore prokaryotes.
Archaea were initially classified as bacteria, receiving the name
archaebacteria, but this classification is outmoded. Wikipedia

Organism classification: Euryarchaeota
Scientific name: Archaea
Rank: Domain

Higher classification: Neomura

Lower classifications View 2+ more
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Diversity of Archaea

Though archaeans are involved in many important
ecological processes and present across Earth's
ecosystems, they are most known for being
extremophiles, existing in conditions that prevent
most organisms from functioning:
® thermophiles live at high temperatures
® hyperthermophiles live at really high
temperatures (present record is 121°Cl!)
® psychrophiles (also called cryophiles) like it
cold (one in the Antarctic grows best at 4°C)
® halophiles live in very saline environments
(like the Dead Sea)
® acidophiles live at low pH (as low as pH 1
and who die at pH 7!)
@ alkaliphiles thrive at a high pH.
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Archaeans

Archaea constitute a domain of single-celled organisms. These
microorganisms lack cell nuclei and are therefore prokaryotes.
Archaea were initially classified as bacteria, receiving the name
archaebacteria, but this classification is outmoded. Wikipedia
Organism classification: Euryarchaeota

Scientific name: Archaea

Rank: Domain

Higher classification: Neomura

Lower classifications View 2+ more
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Domain

Bacteria Archea Eukarya
Nucleus absent absent present
Organelles absent (?) absent (?) present
Peptidoglycan Wall present absent absent
RNA polymerase only one several several
Initiating tRNA amino acid F-methionine methionine methionine
Introns very rare some very common
Response to antibiotics strep no growth growth growth
and chloramphenicol
Circular chromosome present present absent
Histones surround DNA absent some species present
Growth at >100 C No some species No
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Bacteria Archea Eukarya
Nucleus absent absent present
Organelles absent (?) absent (?) present
Peptidoglycan Wall present absent absent
RNA polymerase only one several several
Initiating tRNA amino acid F-methionine methionine methionine
Introns very rare some very common
Response to antibiotics strep no growth growth growth
and chloramphenicol
Circular chromosome present present absent
Histones surround DNA absent some species present
Growth at >100 C No some species No
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Prokaryote <

A prokaryote is a typically unicellular organism that
lacks a nuclear membrane-enclosed nucleus. The
word prokaryote comes from the Greek p6 and
Kapuov. In the two-empire system arising from the
work of Edouard Chatton, prokaryotes were classified
within the empire Prokaryota. Wikipedia

Bacteria prokaryotic View 35+ more
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a. Streptococcus, strings of spheroidal b. E. coli, bacterial rods
or coccoidal bacteria

d. Streptomyces, helical bacteria that
produce antibiotics

e. A myxobacterium, a bacterium in which cells aggregate to form fruiting bodies
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Figure 26.2: Cell shape and size in Bacteria and Archaea.
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Prokaryote <

A prokaryote is a typically unicellular organism that
lacks a nuclear membrane-enclosed nucleus. The
word prokaryote comes from the Greek mp6 and
Kapuov. In the two-empire system arising from the
work of Edouard Chatton, prokaryotes were classified
within the empire Prokaryota. Wikipedia

Bacteria prokaryotic View 35+ more
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Cell membranes

Envelope
\
W [ _ Nucleoid
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Flagella u Vo -
6 proteins (~2 x 10° molecules/cell) - hen %) ' 1,000 proteins (~10° molecules/cell)
pili A ¥l 60 tRNAs (~2 x 10° molecules/cell)
1 protein (~2 % 10° molecules/cell) Glycogen (variable)

Outer membrane

50 proteins (4 abundant, 10° molecules/cell)
5 p-lipids (~5 x 10" molecules/cell)

1 LPS (9 x 10° molecules/cell

Polysomes

~18,000 ribosomes/cell in 1,000 polysomes

Capsule : 55 proteins (~10° molecules; 1 of each per
1 complex polysaccharide 708 ribosome)
Wall 3 rRNAs (58, 168, 23S; 56,000 molecules;

1 of each per 70S ribosome)

1,000 mRNAs (~1,400 molecules, 1 per
polysome!

Peptidoglycan (1 molecule/cell)
Periplasm

50 proteins (~10" molecules/cell)

Cell membrane

200 proteins (~2 x 10" molecules/cell)
7 p-lipids (~15 x 10° molecules/cell)




Chlamydias

Gram-negative

These parasites can survive only within animal cells, depending
on their hosts for resources as basic as ATP. The gram-negative
walls of chlamydias are unusual in that they lack peptidoglycan.
One species, Chlamydla trachomatis, is the most common cause
of blindness in the world and also causes nongonococcal
urethritis, the most common sexually transmitted disease in
the United States.

Spirochetes

These helical heterotrophs spiral through their environment by
means of rotating, internal, flagellum-like filaments. Many spiro-
chetes are free-living, but others are notorious pathogenic para-
sites: Treponema pallldum causes syphilis, and Borrella burgdorferl
causes Lyme disease (see Figure 27.20).

Cyanobacteria

These photoautotrophs are the only prokaryotes with plantlike,
oxygen-generating photosynthesis. (In fact, as we’ll discuss in
Chapter 28, chloroplasts likely evolved from an endosymbiotic
cyanobacterium.) Both solitary and filamentous cyanobacteria are
abundant components of freshwater and marine phytoplankton,
the collection of photosynthetic organisms that drift near

the water's surface. Some filaments have cells specialized for
nitrogen fixation, the process that incorporates atmospheric
N into inorganic compounds that can be used in the synthesis
of amino acids and other organic molecules (see Figure 27.14).

Gram-Positive Bacteria

Gram-positive bacteria rival the proteobacteria in diversity.
Species in one subgroup, the actinomycetes (from the Greek
mykes, fungus, for which these bacteria were once mistaken),
form colonies containing branched chains of cells. Two species
of actinomycetes cause tuberculosis and leprosy. However, most
actinomycetes are free-living species that help decompose the
organic matter in soil; their secretions are partly responsible
for the “earthy” odor of rich soil. Soil-dwelling species in the
genus Streptomyces (top) are cultured by pharmaceutical compa-
nies as a source of many antibiotics, including streptomycin.

Gram-positive bacteria include many solitary species, such as
Badlllus anthracis (see Figure 27.9), which causes anthrax, and
Clostridiurn botulinum, which causes botulism. The various species
of Staphylococcus and Streptococcus are also gram-positive bacteria.

oplasmas (bottom) are the only bacteria known to lack

cell walls. They are also the tiniest known cells, with diameters
as small as 0.1 ym, only about five times as large as a ribosome.
Mpycoplasmas have small genomes—M)coplasima genltalium has
only 517 genes, for example. Many mycoplasmas are free-living
soil bacteria, but others are pathogens.
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a. DNA transfer by conjugation

Virus-infected donor

cell.

Recipient

Recipient

Recipient

In conjugation, DNA
(usually a plasmid)
from a donor cell is
transferred through
a pilus into the
recipient cell.

In transformation,
DNA released into
the environment by
dead cells is taken
up by a recipient
cell.

In transduction,
DNA is transferred
from adonorto a
recipient cell by a
virus.

Figure 26.4: Horizontal gene transfer in bacteria. DNA shown in red
originates from the donor cell. DNA shown in blue is that of the recipient




-

.

a. DNA transfer by conjugation

Recipient

Virus-infected donor Recipient

In transformation,
DNA released into
the environment by
dead cells is taken

up by a recipient
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In transduction,
DNA is transferred
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recipient cell by a
virus.

Figure 26.4: Horizontal gene transfer in bacteria. DNA shown in red
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a. DNA transfer by conjugation

In conjugation, DNA
(usually a plasmid)
from a donor cell is
transferred through
a pilus into the
recipient cell.

In transduction,
DNA is transferred
from a donor to a
recipient cell by a
virus.

Virus-infected donor Recipient

Figure 26.4: Horizontal gene transfer in bacteria. DNA shown in red
originates from the donor cell. DNA shown in blue is that of the recipient
cell.
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a. DNA transfer by conjugation

b. DNA transfer by transformation

In conjugation, DNA
(usually a plasmid)
from a donor cell is
transferred through
a pilus into the
recipient cell.

In transformation,
DNA released into
the environment by
dead cells is taken
up by a recipient
cell.
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Protein
DNA

The circular bacterial
DNA molecule is attached
by proteins to the inner
membrane (red).

DNA replication begins
at a specific location and
proceeds bidirectionally
around the circle.

9 The newly synthesized
DNA molecule i§ also — Newly
attached to the inner synthesized
membrane, near the DNA

attachment site of the
Kinitial molecule.

\ 4
\4
o As replication proceeds,

the cell elongates

symmetrically around the

midpoint, separating the
\4
v

kDNA attachment sites.

Cell division begins
with the synthesis of new
membrane and wall
material at the midpoint.

Continued synthesis
completes the constriction
and separates the daughter
cells.




Cell Division

by

Simple Fission

The circular bacterial
DNA molecule is attached
by proteins to the inner
membrane (red).

DNA replication begins
at a specific location and
proceeds bidirectionally
around the circle.

9 The newly synthesized
DNA molecule is also

attached to the inner

membrane, near the

attachment site of the
Kinitial molecule.

o As replication proceeds,

the cell elongates
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midpoint, separating the
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with the synthesis of new
membrane and wall
material at the midpoint.
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https://www.youtube.com/watch?v=KlpcCyuypzg&t=6s
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FIGURE 3.3 A typical growth curve for a bacterial population. Compare the difference in the shape of the
curves in the death phase (colony-forming units versus optical density).
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FIGURE 27.2

Degradation and cycling of organic matter in sediments in relation to bacterial suiphate
reducticn and methanogenesis. After T, H. Blackburn, “The Micrebial Nitrogen Cycle,”
in Krumbein, W. E., ed., Microbial Gecchemistry, Boston: Blackwell Publications (1983).
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With an average length of 1 centimeter, Thiomargarita magnifica bacteria (several pictured) are big enough to see with the
naked eye.
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Diversity in Eukaryotes

Figure 25.15
Sxlogy: How Lefe Works, Thard Editson
© 2019 W H, Freeman and Company
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Prokaryotic Phylogeny

ARCHAEA
TACK

Euryarchaeota
r 1 4 EUKARYA
BACTERIA pioteobacteria W Fungi
Cyanobacteria
o Plants
bacteria Other
eukaryotes
c— | ——— o \
=

Bacteria that gave rise
to chloroplasts

Bacteria that gave rise
to mitochondria

Common ancestral community of primitive cells

Figure 24.15
Swlogy: How Life Warks, Thed Editon

© 2019W H Freeman and Company



Origins of Eukaryotic Cells

Figure 25.7
Heology: How Life Works, Third Edition
© 2019W H, Freeman and Company



How Photosynthesis Spread

through the Eukarya

e Al — L5
Photosynthesis did not first evolve in eukaryotic cells. In fact, oxygenic
photosynthesis evolved only once, in the common ancestor of living

cyanobacteria.

Biology: How Life Works © Macmillan Education

View Transcript Link

Photo credit: Cyanobacteria: Dr. Ralf Wagner
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Eukaryotic Life Cycles

Eukaryotic Life Cycles

Unicellular Eukaryote with Prominent Haploid Phase

Many unicellular eukaryotes live as haploid cells, designated as 1n.

Biology: How Life Works © Macmillan Education

Photo credits: Chlamydomonas: Andrew Syred/Science Source; Diatom: Steve Gschmeissner/Science Source



Eukaryotic Life Cycles (1/2)
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Eukaryotic Life Cycles (1/2)
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Eukaryotic Life Cycle in Animals
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Eukaryotic Life Cycle in Plants
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