SUMMER INSTITUTE CALENDAR 2022						
SUN	MON	TUE	WED	THU	FRI	SAT
						July 02 Early Arrival Airport Arrivals and Check-in
July 03	04	05	06	07	08	09
Early Arrival Airport Arrivals and Check-in	Airport Arrivals and Check-in 6:00pm: 4th of July Celebrations	9:30am-12pm: Campus tour, Panther ID & ISSS Check-in 12-2pm Lunch 2:00-6:00pm, Shuttle to local grocery store	9:30am-11:30am ISSS, OII, & Housing Orientation & Presentation 2:30-4:30pm:-Welcome Reception and Buddy Meet & Greet Event	Classes begin! 9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 INTRO - TRAINING	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 DNA PREPARATION	Free Day
10	11	12	13	14	15	16
12:00-4:00pm: The World Coca- Cola and Georgia Aquarium	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 PROTEOMICS I	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 PROTEOMICS II	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm:BIOL4905 PROTEOMICS III 6:00-10:00pm: Atlantic Station Shopping & Movie	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 PROTEOMICS IV ?	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 RNA PREPARATION	6:00-9:00pm: Dinner in America (Sign-up)
17	18	19	(oign-up) 20	21	22	23
Free Day	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 qPCR & AUTOMATION	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 DNA SEQUENCING	MINI BREAK	9-11:20am: Morning course CDC TRIP 1:30-4:30pm: BIOL4905 MICROSCOPY / AFM	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30 - 4:30pm: BIOL4905 NEXT GEN SEQ. 5:30-7:30pm: Meet & Greet BBQ	9:00am - 6:00pm: Outlet Mall
24	25	26	27	28	event @ The Commons 29	30
Free Day	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 MICROARRAY I	9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 NANOSTRING	9-11:20am: Morning course 11:20am: 2000m: Lunch Notebook 1:30-4:30 NANOSTRING	Last day of classes 9-11:20am: Morning course 11:20am-2:00pm: Lunch break 1:30-4:30pm: BIOL4905 FLOW CYTOMETRY	FINALS	Free Day
31	August 01	02	03	04		
Free Day	Activity Day at the Recreation Center (Sign-up)	Free Day	9:30-11:00am: Georgia Capitol Tour (Sign-up) 2:00-4:00pm: Closing Reception	Departures (check-out at 12:00pm)		
Note: Students may arrive prior to the program date with an extra charge of \$35 per night. Earliest day to check-in to University Commons is July 2. Legend: Orange: Courses Blue: Lunch Break. Red: Sign-up events						

Cellometer Auto 2000

Dual Fluorescence and Bright Field Imaging: allow for rapid analysis of cell viability in heterogenous cell populations

BD FACSCanto™ II

Cell analyzer with proven reliability and high-quality results supporting up to 10 parameters.

Using Fluorescence to Interrogate Cells

Fundamentals of Cytometry

StarCellBio

presents

FLOW CYTOMETRY

Fundamentals of Cytometry

https://youtu.be/EQXPJ7eeesQ

Fundamentals of Cytometry

What is it?

A brief history What cytometry is / does

How does it work?

Fluidics Optics

Electronics

What can we do with it?

A quick overview of some of its applications

New generation Accuri makes flow

cytometry even more within reach.

BD FACSCanto™ II

Cell analyzer with proven reliability and high-quality results supporting up to 10 parameters.

BD LSRFortessa™

FACSFortessa is configurable and upgradeable with up to 4 lasers to detect up to 18 colors simultaneously.

Research cell analyzers

Flow cytometers that identify, count, and characterize cells to support cell analysis. needs.

BD FACSAria™ III

A cell sorter with patented technologies that deliver ease-of-use and superior multicolor performance.

BD Accuri[™] C6 Plus

New generation Accuri makes flow cytometry even more within reach.

BD FACSCanto™ II

Cell analyzer with proven reliability and high-quality results supporting up to 10 parameters.

BD LSRFortessa™

FACSFortessa is configurable and upgradeable with up to 4 lasers to detect up to 18 colors simultaneously.

BD FACSAria™ III

A cell sorter with patented technologies that deliver ease-of-use and superior multicolor performance.

Research cell analyzers

Flow cytometers that identify, count, and characterize cells to support cell analysis. needs.

BD Accuri[™] C6 Plus

New generation Accuri makes flow cytometry even more within reach.

BD FACSCanto™ II

Cell analyzer with proven reliability and high-quality results supporting up to 10 parameters.

BD LSRFortessa™

FACSFortessa is configurable and upgradeable with up to 4 lasers to detect up to 18 colors simultaneously.

Research cell analyzers

Flow cytometers that identify, count, and characterize cells to support cell analysis. needs.

BD FACSAria™ III

A cell sorter with patented technologies that deliver ease-of-use and superior multicolor performance.

4 lasers, Blue lasers (405, 488 nm), Red laser (639 nm) and a Green laser (561 nm).

Mounts up to 18 detectors, and measure a maximum of \sim 22-24 colors simultaneously.

BD FACSCanto™ II

New generation Accuri makes flow cytometry even more within reach.

BD Accuri[™] C6 Plus

BD LSRFortessa™

FACSFortessa is configurable and upgradeable with up to 4 lasers to detect up to 18 colors simultaneously.

Research cell analyzers

Flow cytometers that identify, count, and characterize cells to support cell analysis. needs.

4 lasers, Blue lasers (488 nm), Red laser (639 nm) and Green laser (561 nm) and a near UV (375-nm).

Mounts up to 20 detectors, and measure a maximum of \sim 13 dye colors simultaneously.

BD FACSAria™ III

A cell sorter with patented technologies that deliver ease-of-use and superior multicolor performance.

Properties of FSC and SSC

Forward Scatter (FSC)—refracted and diffracted light

- Related to cell volume
- Measured along axis of incident light in the forward direction

Side Scatter (SSC)—reflected and refracted light

- Related to cell granularity and complexity
- Selected at 90° to the laser beam

"senescent" T-cells etc.

lung carcinoma and displays the membranous staining pattern as seen in this image; neuroendocrine markers are especially useful in biopsy specimens that demonstrate excessive crush artifact, as the nuclear details can be difficult to distinguish

Basic Flow Cytometry System

Fluidics

Carries particles to the laser intercept

Optics

Light source for creating FSC & SSC as well as fluorescence Optics for detecting fluorescence

Electronics

Creating digital signals from the optics and displaying these signals on a computer

Basic Fluidics

Basic Fluidics

Sample Flow

Laminar flow

In fluid dynamics, laminar flow is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like playing cards.

Interrogation Point

Basic Optical Systems

Excitation optics

Lasers

Lenses to shape and focus the laser beam

Collection optics

A collection lens to capture light emitted from the particle-laser beam interaction

A system of optical mirrors and filters to direct specified wavelengths of the captured light toward designated photon sensitive detectors

Basic Optical Systems

Lasers

Light Amplification by Stimulated Emission of Radiation

Light output from a a laser

Monochromatic

Unidirectional

Basics of Cytometry

Excitation optics

Lasers

Lenses to shape and focus the laser beam

Excitation optics

Lasers

Lenses to shape and focus the laser beam

What is Fluorescent light?

The visible or invisible **radiation emitted by certain substances** as a result of incident radiation of **a shorter wavelength**

Fluorescence molecules absorb light and emit light at a longer wavelength (ie lower energy)

Note: these are approximations only

Behavior of 1 fluorescent molecule

Molecule 1 absorbs blue and emits green

Behavior of 2 fluorescent molecules

Molecule 1 absorbs blue and emits green Molecule 2 absorbs yellow and emits red

- The fluorochrome absorbs energy from the laser
- The fluorochrome releases the absorbed energy by:
 - Vibration and heat dissipation
 - Emission of photons of a longer wavelength

- The fluorochrome absorbs energy from the laser
- The fluorochrome releases the absorbed energy by:
 - Vibration and heat dissipation
 - Emission of photons of a longer wavelength

- The fluorochrome absorbs energy from the laser
- The fluorochrome releases the absorbed energy by:
 - Vibration and heat dissipation
 - Emission of photons of a longer wavelength

FITC Spectra

Fluorescein (FITC) can be excited using a 488 nm BLUE Laser with a "peak" emission at ~525 nm

2 Colour Spectra

Fluorescein (FITC) can be excited using a 488 nm BLUE Laser with a "peak" emission at ~525 nm

Phycoerythrin (PE) can also be excited using a 488 nm BLUE Laser with a "peak" emission at ~578 nm

2 Colour Direct Staining

Examples...

3 Colour Spectra

Fluorescein (FITC) can be excited using a 488 nm BLUE Laser with a "peak" emission at ~525 nm

Phycoerythrin (PE) can also be excited using a 488 nm BLUE Laser with a "peak" emission at ~578 nm

PerCP has a "peak" emission ~695 nm

Multiple Colour Spectra

Several fluorescent colours with their **excitation** and **emission** peaks (dotted lines) derived from different lasers

Collection Optics

BD LSRFortessa™

FACSFortessa is configurable and upgradeable with up to 4 lasers to detect up to 18 colors simultaneously.

Collection Optics... Octagonal Arrangement

Optical Filters

Optical Filters

Note: most of the filters that are used here are "Bandpass" wavelength nm / range

Collection Optics... Octagonal Arrangement

Optical Filters

Wavelength (nm)

Note: most of the filters that are used here are "Bandpass" wavelength nm / range eg. 780 / 60

	Fluorescent Protein Properties																
Class	Protein	Excitation (nm)		Emission (nm)		Fluorescence Quantum Yield			Extinction Coefficient (M ⁴ cm ⁴)			Brightness (x 10 ⁻⁹ M ⁻¹ cm ⁻¹)		рк,		Reference	
		Literature	Our Data	Literature	Our Data	Literature	Our Data	s.d.	Literature	Our Data	s.d.	Literature	Our Data	Literature	Our Data	s.d.	
Blue	EBFP2 mTagBFP2	383 399	386 400	448 454	448 454	0.56 0.64	0.53 0.48	0.01 0.01	32,000 50,600	39,000 76,000	725 4,000	17.92 32.38	20.67 36.48	5.3 2.7	4.4 2.4	0.07 0.02	43 44
Cyan	mTurquoise mTurquoise2 mCerulean mCerulean3 mTFP1	434 434 434 433 462	434 434 433 467	474 474 475 475 492	474 473 475 475 492	0.84 0.93 0.49 0.80 0.85	0.84 0.92 0.51 0.80 0.85	0.02 0.03 0.02 0.01 0.02	34,000 30,000 33,000 40,000 64,000	31,000 31,000 28,000 29,000 53,000	400 300 1,100 730 1,000	28.36 27.90 16.17 32.00 54.40	26.04 28.52 14.28 23.20 45.05	4.5 3.1 4.5 3.2 4.3	3.5 3.6 3.9 3.4 4.3	0.02 0.01 0.12 0.01 0.12	45 46 47 48 49
UV-Excitable Green	mT-Sapphire	399	396	511	509	0.60	0.59	0.00	44,000	34,000	1,100	26.40	20.06	4.9	4.8	0.05	50
Green	EGFP mEGFP Emerald mEmerald stGFP	488 NA 484 NA 485	488 489 483 483 483	507 NA 509 NA 507	508 508 509 510 509	0.60 NA 0.68 NA 0.65	0.67 0.74 0.75 0.79 0.72	0.02 0.01 0.01 0.01 0.01	56,000 NA 57,500 NA 83,300	56,000 62,000 62,000 62,000 53,000	1,300 1,550 1,150 1,500 1,750	33.60 0.001 39.10 0.001 54.15	37.52 45.88 46.50 48.98 38.16	6.0 6.0 6.0 5.3	6.1 5.8 4.6 4.7 5.8	0.25 0.14 0.02 0.16 0.09	12 17 51 17 14
Yellow-Green	mPapaya YPet Citrine mCitrine Venus mVenus Topaz mTopaz Ciover mClover mNeonGreen	NA 517 516 NA 515 515 514 NA 505 NA 506	528 517 515 515 515 515 515 515 505 505 504	NA 530 529 NA 527 527 527 527 NA 515 NA 515	540 527 526 528 526 528 527 527 527 517 516 517	NA 0.77 0.76 NA 0.63 0.64 0.57 NA 0.76 NA 0.80	0.74 0.76 0.70 0.74 0.65 0.67 0.71 0.68 0.88 0.88 0.84 0.80	0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02	NA 104,000 77,000 NA 110,000 94,500 NA 111,000 NA 116,000	62,000 132,000 117,000 120,000 126,000 127,000 113,000 108,000 105,000 113,000	1,600 1,950 2,000 2,600 3,750 4,000 1,900 2,500 1,800 1,900	0.00 80.08 58.52 0.001 69.30 67.20 53.87 0.001 84.36 0.001 92.80	43.88 100.32 81.90 88.80 81.90 85.09 80.23 73.44 92.40 88.20 90.40	NA 3.6 3.7 5.7 6.0 6.0 NA NA 6.2 NA 3.7	6.6 3.3 3.4 3.6 3.4 6.3 3.9 3.9 3.9 3.9 3.9 3.9	0.02 0.01 0.08 0.13 0.05 0.08 0.12 0.16 0.08 0.05 0.01	6 52 15 17 36 36 51 17 53 53 53
Orange	mOrange mOrange2 mKO mKO2	548 549 548 551	548 550 547 551	562 565 559 565	563 564 560 563	0.69 0.60 0.60 0.57	0.64 0.56 0.77 0.71	0.02 0.02 0.02 0.02	71,000 58,000 51,600 63,800	112,000 73,000 134,000 105,000	7,750 800 4,700 3,100	48.99 34.80 30.96 36.37	71.68 40.88 103.18 74.35	6.5 6.5 3.0 3.5	6.3 6.5 4.9 5.5	0.10 0.14 0.15 0.13	6 18 33 36
Orange-Red	tdTomato TagRFP TagRFP-T DsRed2	554 533 535 563	555 556 557 561	581 584 584 582	581 581 583 583	0.69 0.48 0.41 0.55	0.55 0.33 0.32 0.53	0.02 0.02 0.01 0.02	138,000 100,000 81,000 43,800	92,000 130,000 106,000 77,000	7,400 4,100 6,000 690	95.22 48.00 33.21 24.09	50.60 42.90 33.92 40.81	4.7 3.1 4.6 NA	4.5 3.0 4.3 4.2	0.05 0.15 0.12 0.12	6 57 18 4, 38
Red	mRuby mRuby2 mApple mRFP1 mCherry FusionRed	538 539 568 584 587 580	338 339 569 386 586 586 377	605 600 592 607 610 608	587 590 591 609 610 604	0.35 0.38 0.49 0.25 0.22 0.19	0.38 0.37 0.46 0.35 0.30 0.30	0.01 0.01 0.02 0.01 0.01 0.01	112,000 113,000 75,000 50,000 72,000 83,000	109,000 107,000 75,000 55,000 85,000 85,000	1,800 2,800 1,000 1,500 2,000 1,800	89.20 42.94 86.75 12.50 15.84 15.77	41.42 39.59 34.50 19.25 25.50 25.50	4.4 53 65 45 c45 45	4.4 4.4 5.5 3.8 3.8 4.2	0.05 0.05 0.09 0.20 0.11 0.01	59 53 18 60 6 61
Far-Red	mKate2 mNeptune mCardinal mPlum	588 600 604 590	587 599 603 588	633 650 659 649	623 640 631 643	0.40 0.20 0.19 0.10	0.42 0.23 0.18 0.13	0.02 0.01 0.00 0.01	62,500 57,500 87,000 41,000	57,500 55,000 79,000 80,000	600 1,300 1,550 1,100	25.00 11.30 16.33 4.10	24.15 12.65 14.22 10.40	3.4 3.4 NA < 4.5	5.5 5.3 5.3 4.6	0.05 0.04 0.12 0.05	62 63 64 65

Supplementary Table 1. Spectral Properties of Fluorescent Proteins. Data were acquired as described in the Methods. Quantum yield standards used were: 1-aminoanthrcene in cyclohexane (QY = 0.61); fluorescein in 0.1 M NaOH (QY = 0.85); rhodamine B in EtOH (QY = 0.65); cresyl violet in EtOH (QY = 0.54). Also included are the original references for the creation of each variant.

Electronics

-

Cell Cycle Analysis via Flow Cytometry

Cell Cycle Compartments such analysis requires some version of membrane permealization, using alcohol (?) or detergents etc.

Cell Cycle Analysis via Flow Cytometry

Apoptosis via Flow Cytometry

Different steps in apoptotic cell disassembly.

Apoptosis via Flow Cytometry

Different steps in apoptotic cell disassembly.

Apoptosis via Flow Cytometry Different steps in apoptotic cell disassembly.

Apoptosis via Flow Cytometry

Different steps in apoptotic cell disassembly.

Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. ... These are signalling molecules that allow recruitment of immune cells to an infected cell or tissue.

Hallmarks of the apoptotic and necrotic cell death process **Apoptosis** includes **cellular shrinking**, chromatin condensation and margination at the nuclear periphery with the eventual formation of membrane-bound apoptotic bodies that contain organelles, cytosol and nuclear fragments and are phagocytosed without triggering inflammatory processes.

Hallmarks of the apoptotic and necrotic cell death process **Apoptosis** includes **cellular shrinking**, chromatin condensation and margination at the nuclear periphery with the eventual formation of membrane-bound apoptotic bodies that contain organelles, cytosol and nuclear fragments and are phagocytosed without triggering inflammatory processes.

Hallmarks of the apoptotic and necrotic cell death process **Apoptosis** includes **cellular shrinking**, chromatin condensation and margination at the nuclear periphery with the eventual formation of membrane-bound apoptotic bodies that contain organelles, cytosol and nuclear fragments and are phagocytosed without triggering inflammatory processes.

Hallmarks of the apoptotic and necrotic cell death process **Apoptosis** includes **cellular shrinking**, chromatin condensation and margination at the nuclear periphery with the eventual formation of membrane-bound apoptotic bodies that contain organelles, cytosol and nuclear fragments and are phagocytosed without triggering inflammatory processes.

Hallmarks of the apoptotic and necrotic cell death process **Apoptosis** includes **cellular shrinking**, chromatin condensation and margination at the nuclear periphery with the eventual formation of membrane-bound apoptotic bodies that contain organelles, cytosol and nuclear fragments and are phagocytosed without triggering inflammatory processes.
Apoptosis vs. Necrosis

Hallmarks of the apoptotic and necrotic cell death process **Apoptosis** includes **cellular shrinking**, chromatin condensation and margination at the nuclear periphery with the eventual formation of membrane-bound apoptotic bodies that contain organelles, cytosol and nuclear fragments and are phagocytosed without triggering inflammatory processes.

The necrotic cell swells, becomes leaky and finally is disrupted and releases its contents into the surrounding tissue resulting in inflammation. Modified from (Van Cruchten et al. 2002)

Apoptosis vs. Necrosis

<u>Apoptosis</u>

- Process of programmed cell death
- Programmed cell death involves a series of biochemical events leading to characteristic changes in cell morphology and death
- Changes to the cell membrane include loss of membrane asymmetry and attachment, cell shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA fragmentation
- Apoptosis, confers advantages during an organism's life cycle.
 - the differentiation of fingers and toes in a developing human embryo occurs because cells between the fingers apoptosis; the result is that the digits are separate.
 - Between 50 and 70 billion cells die each day due to apoptosis in the average human adult.

<u>Necrosis</u>

- Traumatic cell death that results from acute cellular injury,
- Processes of disposal of cellular debris do not damage the organism
- Various applications can be used to differentiate between Apoptosis and Necrosis

Apoptosis via Flow Cytometry

Annexin V is a surface marker, which detects early membrane changes associated with apoptosis; namely the "externalization of the the inner leaflet of the lipid membrane

Apoptosis via Flow Cytometry

Annexin V is a surface marker, which detects early membrane changes associated with apoptosis; namely the "externalization of the the inner leaflet of the lipid membrane.

Schematic Representation of the Annexin V assay

765

npg

Apoptosis via Flow Cytometry

12 caspases

There are 12 **caspases** in humans alone, which have been classically grouped on the basis of sequence homology, domain architecture, and cell biology as inflammatory (**caspase-1**, **caspase-4**, **caspase-5**, and **caspase-11**), apoptotic initiators (**caspase-2**, **caspase-8**, **caspase-9**, and **caspase-10**), or executioners (**caspase-3**, ... Apr 5, 2016

1 caspase

There is ONLY 1 metacaspase in S. cerevisiae, "budding yeast"

Apoptosis via Flow Cytometry

Yeast cells treated with Heavy Metal & stained with

FAM-FLICA (caspase)

Yeast + heavy metal

(necrosis)

npg

Detection of DNA fragmentation using "TUNEL" Assay

Propidium Iodide

Cytometry - Cell Sorting

2D Gel electrophoresis

2-DE DIGE gel of copper (II)-treated S. cerevisiae wild type proteins of apoptotic and non-apoptotic sub-populations, differentially labeled using CyDye... Apoptotic cell proteins were labeled with Cy5 and non-apoptotic cell protein were labeled with Cy3

Questions:

How long does the RNA "hybridization step" of the RNA to the chip bound DNA take in in Microarray Analysis? ["Microarray_1 video]

How many potential **Genes per Chip** are now available on a **10µM Feature Size** Genechip? [Microarray Lecture pdf]

What is the resolution limit of a light microscopy? [Microscopy Lecture pdf]

What is the resolution limit of an AFM? [Microscopy Lecture pdf]

What is "Abbe's diffraction limit"? Why is it important? [Microscopy Lecture pdf]

What is the HIGHEST magnification "objective lens" that we have on our BZX700 microscope? ["How to use the BZX700" video]

Which lasers do we have in the LSR Fortessa? [Cytometry in the ABCore (video)]? Why is this important?