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Capillary DNA Sequencers
(ABI/Life Technologies) Model 3500xl]
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oo GCATCTGACTCCTGAGGAGAAG ‘o
DNA

CACGTAGACTGAGGACTCCTCTTC
4 @ Transcrlptlon
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GSU Biology Core Facility
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Bacterial DNA Plasmids / R-factors

Plasmids / R-factors: Extrachromosomal, self replicating or autogenous replicating, covalently

closed, circular pieces of dsDNA. They can, sometimes be integrated into the host chromosome,
and if so they are often called and episome.

Plasmids of 3,000 - 5,000 bp, often have a high copy number (15 - 100 copies per cell).
Plasmids of 4,000 - 300,000 bp (300 kbp), are as common in nature, but less highly copied per
cell(one or two per cell) and (due to these factors) are less easily manipulatable.
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Bacterial DNA Plasmids / R-factors

Plasmids / R-factors: Extrachromosomal, self replicating or autogenous replicating, covalently
closed, circular pieces of dsDNA. They can, sometimes be integrated into the host chromosome,

and if so they are often called and episome.

Plasmids of 3,000 - 5,000 bp, often have a high copy number (15 - 100 copies per cell).
Plasmids of 4,000 - 300,000 bp (300 kbp), are as common in nature, but less highly copied per
cell(one or two per cell) and (due to these factors) are less easily manipulatable.

Conjugative plasmids invariably contain fra and mob genes, which are necessary to promote
cell to cell interaction and and also to promote movement of the DNA through the "conjugative

bridge".
14
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Conjugative plasmids invariably contain fra and mob genes, which are necessary to promote
cell to cell interaction and and also to promote movement of the DNA through the "conjugative
bridge".
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Conjugative plasmids invariably contain fra and mob genes, which are necessary to promote
cell to cell interaction and and also to promote movement of the DNA through the "conjugative

bridge".
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Plasmids are not named and grouped by size, however, or even by DNA homology, but
by....... their “ incompatibility ” or INABILITY TO CO-EXIST

eg. IncP plasmids have a broad-host range and include the IncQ or IncP4 group of plasmids.

Bacterial DNA Plasmids

Incompatibility

17



Bacterial DNA Plasmids

incompatibility
occurs in any number of ways, but

normally affects either the initiation of replication or the control of the attachment of
plasmids to the bacterial membrane (which, for some, or the transfer and/or mobilization of
plasmids through the pilus during congugation. In effect, potentially any shared
characteristic that is required for efficient segregation of low copy number plasmids into the
two daughter cells. Thus, at its core, incompatibility can be anything that provides an
element of “competition” -gives rise to selection of one “incompatible” plasmid over another

18
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Two incompatible plasmid clones will have small differences that cause one to have
a faster replication rate, or increased toxicity, over the other.

This is said to cause the plasmids to be replicated assymetrically, contributing to
the eventual loss of one of the plasmids.
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Incompatibility Group

Plasmids

F, R386

_1s3
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| (F factor)
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Col B-K99, Col B-K166
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R401

R388, S-a

22



Bacterial DNA Plasmids / R-factors
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Plasmid  Size (kb) IncP-1 Resistances Resistance genes D d p Ref / No.
subgroup
pAKD1 58,246 IncP-18 Sp, Sm, Su, Hg aadA, sull, merE Tn21-like transposon Sen etal. (2011)/JN106164.1
pB2/pB3"  60,732/56,167 IncP-1p Aminoglycosides, p-lactam, Cm, Su,  aadA2, blayps_2, cmlA1, sull, Tn-tet, Tn402 Heuer etal. (2004)/NC_006388.1
Te, quaternary ammonium tetA(C), tetR(C), qacEA1
compounds
pB4 79,370 IncP-18 p-lactam, tripartite multi-drug blaps_, strAB, mexCD-oprJ, chr Tn5393¢, Tn5719 Droge etal. (2000), Tauch etal. (2003)
resistance (MDR) efflux system, /NC_003430.1
Sm, Em, Chr
pB5 64,696 IncP-1a Sm, Te, Km, Gm, Su, quaternary aacAd4, aacCl, tetA, tetR, aphA, nd Droge etal. (2000); Szczepanowski etal.
ammonium compounds sull, gacEa1 (2011)/NC_019020.1
pB6 58 IncP-1p Tc, Sm, Sp, Cm, Su nd nd Droge etal. (2000)
pB8 57198 IncP-18 Sm, Sp, B-lactam, Su, quaternary aadAd, oxa2, sull, gacEA 1, gacF Tn5501, “cryptic” Tn, Tn402/  Schluter etal. (2005)/NC_007502.1
ammonium compounds Tn5090, TnQAC/(Tn3 family),
Tn501/Tn21
pB10 64,508 IncP-1g p-lactam, Su, Sm, Tc, quaternary oxaZ, sull, strAB, tetA, qacEA1, Tn5393¢, Tn 1721, Tn501 Schliter etal. (2003)/NC_004840.1
ammonium compounds, Hg mer
pB11 66,911 IncP-1a Tc, Ap, Km, Hg tetA, tetR, aphA, merE Tn501, Tn5053 Droge etal. (2000), Szczepanowski et al.
(2011)/CP002152.1
pB12 64,393 IncP-1p Tc, Sm, Sp, Em, p-lactam / Su, tetA, aacAd, oxa2, sull, gacEA1 Tn21,Tn402 Droge etal. (2000), Sen etal. (2012)
quaternary ammonium compounds /JX469826.1
pTBMN 68,869 IncP-1a Aminoglycosides, p-lactam, Tc aphA, aadA1, aacA4, oxa2, tetA, Tn402/ (Tn5090), Tn 1721, Tennstedt etal. (2005)//NC_006352.1
tetR
pMCBF1 62,689 IncP-1¢ Multi-drug efflux (MDE) outer oprN, merE Tn5053 Norberg etal. (2011)/AY950444.1
membrane prot. NodT family, Hg
RP4/RK2 60,099 IncP-1a Tc, Km, Ap tetA, aph Tn4371,Tn1 Pansegrau etal. (1994)/L27758.1
pTH10 70 IncP-1a Tc, Km, Ap nd nd Harayama etal. (1980)
R751 53,423 IncP-1p Tp dhfrllc Tn402/ Tn5090, Tn501 Thorsted etal. (1998)
PKJIKS 54,383 IncP-1¢ Te, Tp, aminoglycosides, Su, Sp, tetA, tetR, dfrA1, aadA11b, sull, Tn402 Bahl etal. (2007)/NC_008272.1
quaternary ammonium compounds  gacEAT
pG527 80,762 IncP-1a Aminoglycosides, Km, Sm, aadAl, aphA, sph, blarens—g7, tetA,  Tn3,Tn7,Tn1721 Sen etal. (2012)/JX469830.1
p-lactam, Tc tetR
pSP21 72,683 IncP-1a Tc, Km, aminoglycosides, p-lactam tetA, tetR, aph, aadA1l, aacA4, oxa2 Tn402 Pansegrau etal. (1994),
Szczepanowski et al. (2011)/NC_019021.1
pBS228 89,147 IncP-1a Aminoglycosides, Sp, Tp, Tc, aadA, dhfi, tetA, blarem—s7. aph, Tn1013,Tn5718, Tn1,Tn7 Haines etal. (2007)/NC_008357.1
p-lactam, Hg merE
BRA100 56,265 IncP-18 Aminoglycosides, Su, quaternary aacAd, strAB, sull, qacEA1, merE  Tn6305/(Tn3 family) Unpublished/CP003505
ammonium compounds, Hg
PWEC911 74,056 IncP-1 Tc, p-lactam, Km, Hg tetA, blarens—g7, aphA, merE nd Sen etal. (2012)/JX469833.1
pKSP212 54,342 IncP-1 Aminoglycosides, Su, Hg aac(6)-Ib, sull, merE Tn3 Sen etal. (2012)/JX469831.1
pBRSB222 36,880 IncP-1 Aminoglycosides, f-lactam, Su, a3adAS, oxa2, sull, gacEA1 nd Sen etal. (2012)JX469825.1
quaternary ammonium compounds
pKS208 50,604 IncP-1 Aminoglycosides, Km, p-lactam aac(6)-1b, aphA1, pEC-IMPQ_139 Tn 1525, Tn5053/Tn402 Sen etal. (2012)/JQ432564.1

Ap, ampicillin; Cb, carbenicillin; Cm, chloramphenicol; Gm, gentamicin; Km, kanamycin; Nx, nalidixic acid; Sm, streptomycin; Sp, spectinomycin; Su, sulfanilamide; Tc, tetracycline; Tp, trimethoprim; Tm, tobramycin;

Hg, inorganic mercury; nd, not determined.

# Plasmids pB2 and pB3 differ only by a duplication of a tetA(C)-tetR-tnpAIS26 fragment in pB2.
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Plasmid  Size (kb) IncP-1 Resistances Resistance genes
subgroup

pAKD1 58,246 IncP-1p Sp, Sm, Su, Hg aadA, sull, merkE

pB2/pB3* 60,732/56,167 | IncP-1p Aminoglycosides, p-lactam, Cm, Su, aadA2, blanps 2, cmiAT, sull,
Tc, quaternary ammonium tetA(C), tetR(C), gacEA 1
compounds

pB4 79,370 IncP-18 B-lactam, tripartite multi-drug blanps 1, StrAB, mexCD-oprJ, chr
resistance (MDR) efflux system,
Sm, Em, Chr

pB5 64,696 IncP-1a Sm, Tc, Km, Gm, Su, quaternary aacAd, aacCl1, tetA, tetR, aphA,
ammonium compounds sull, qgacEA1

pB6 58 IncP-1p Te, Sm, Sp, Cm, Su nd

pB8 57198 IncP-18 Sm, Sp, B-lactam, Su, quaternary aadA4, oxa2, sull, qacEA 1, gacF
ammonium compounds

pB10 64,508 IncP-18 B-lactam, Su, Sm, Tc, quaternary oxaZ2, sull, strAB, tetA, gacEAT,
ammonium compounds, Hg mer

pB1 66,911 IncP-1a Tc, Ap, Km, Hg tetA, tetR, aphA, merE

pB12 64,393 IncP-1p Tc, Sm, Sp, Em, p-lactam / Su, tetA, aacA4, oxa2, sull, qacEA1

quaternary ammonium compounds
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Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of “self”

for the prokaryaotic cell.
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Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of “self”

for the prokaryaotic cell.
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Gene(s) Modification Recognition Number in Restriction
methyltransferase sequencea genomeb endonucleases®
hsdSM M.EcoK -AAC(N 6)GTCG— 595 EcoKI
dam Dam -GATC- 19,120 Dpnl, Dpnll, Sau3A
dcm Dem -CCWGG- 12,045 EcoRII, BstNI
vhdJ YhdJ -ATGCAT- 839 Nsil
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Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of “self”
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Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of “self”
for the prokaryaotic cell.
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N w
N N ol —
O H transformation
o Degradation
5 of doror

DNA DNA fragment.

DNA DNA ?&v:}

o Single-stranded donor DNA
fragment is incorporated

5-methylcytosine N°-methyladenine L

DNA methyltransferases in E. coli K-12

Gene(s) Modification Recognition Number in Restriction
methyltransferase s;equencea genomeb endonucleases®
hsdSM M.EcoK -AAC(N 6)GTCG— 595 EcoKI
dam Dam -GATC- 19,120 Dpnl, Dpnll, Sau3A
dcm Dcm -CCWGG- 12,045 EcoRII, BstNI
vhdJ YhdJ -ATGCAT- 839 Nsil
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Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of “self”
for the prokaryaotic cell.

N H2 v DhA {—— Chromosome
ents bing
to proteins on
cell surface.
\ N 6\ N o
y y ded
into NoSt donor DNA
into host
cell an
2C0Mes
singlo- i
\ strande
N -
N N S —
N O H transformation
o Degradation
Donor of doror
DNA DNA fragment.
?&m}

© singo-stranded donor DNA
5-methylcytosine N°-methyladenine PR

DNA methyltransferases in E. coli K-12

Gene(s) Modification Recognition Number in Restriction
methyltransferase s.eqnencea genomeb endonucleases®
hsdSM M.EcoK -AACNS)GTCG- 595 EcoKI
dam Dam -GATC- 19,120 Dpnl, Dpnll, Sau3A
dcm Dem -CCWGG- 12,045 EcoRII, BstNI
vhdJ YhdJ -ATGCAT- 839 Nsil
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Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of “self”
for the prokaryotic cell.
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ents bing
to proteins on
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DNA DNA D <.

© singo-stranded donor DNA
5-methylcytosine N°-methyladenine

fragment is incorporated
into host chromosome
P

DNA methyltransferases in E. coli K-12

Gene(s) Modification Recognition Number in Restriction
methyltransferase s.eqnem:ea genomeb endonucleases®
hsdSM M.EcoK -AACNS)GTCG- 595 EcoKI
dam Dam -GATC- 19,120 Dpnl, Dpnll, Sau3A
dcm Dem -CCWGG- 12,045 EcoRII, BstNI
vhdJ YhdJ -ATGCAT- 839 Nsil
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Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of “self”
for the prokaryotic cell.

Type | restriction modification enzymes (first identified by Werner Arber and Dussoix in the1960's using
lamda phage infection of E. coli) initially defined two different strains of E. coli -E. coliB and E. coli K12
(two E. coli strains that encode for slight, but specific variants of their HSD system (Host Specificity
Determinant) -encoded by the hsdR, hsdMand hsdS genes).

These enymes are expressed together and generally require interactions with cofactors, such as S-
Adenosyl methionine (AdoMet), hydrolyzed adenosine triphosphate (ATP), and magnesium (Mg2+)
ions.

eg.|EcoB recognizes TGA (Ns) TGCT||EcoK12 recognizes AAC(N6)GTGC

S TGANNNNNNNNTGCT®

EM model for a Type | RM enzyme with DNA bound. HsdR (red), 3 ACTNNNNNNNNACGAs
HsdM (blue and cyan), HsdS ( i

TYPE |

VRV
Kennaway et al. Genes and Development (2012) 26, 92-104. . 37


https://www.neb.com/tools-and-resources/video-library?device=modal&videoid=%7B65d67900-1585-4626-97b6-0382646e2f8c%7D

Restriction Endonucleases: Restriction endonuclease provide an additional tool to facilitate the

creation of physical maps of DNA

Type | restriction modification enzymes (first identified by Werner Arber and Dussoix in the1960's using
lamda phage infection of E. coli) initially defined two different strains of E. coli -E. coliB and E. coli K12
(two E. coli strains that encode for slight, but specific variants of their HSD system (Host Specificity

Determinant) -encoded by the hsdR, hsdMand hsdS genes).

These enymes are expressed together and generally require interactions with cofactors, such as S-
Adenosyl methionine (AdoMet), hydrolyzed adenosine triphosphate (ATP), and magnesium (Mg2+)

ions.

eg. EcoB recognizes TGA (Ns) TGCT

EM model for a Type | RM enzyme with DNA bound. HsdR (red),
HsdM (blue and cyan), HsdS ( i

EcoK12 recognizes AAC(N6)GTGC

S TGANNNNNNNNTGCT®
3 ACTNNNNNNNNACGAs

DNA methyltransferases in E. coli K-12

Gene(s) Modification Recognition Number in Restriction
methyltransferase sequencea genomeb endonucleases®
hsdSM M.EcoK -AAC(N6)GTCG- 595 EcoKI
dam Dam -GATC- 19,120 Dpnl, Dpnll, Sau3A
dcm Dcm -CCWGG- 12,045 EcoRII, BstNI

yhdJ

YhdJ

-ATGCAT-

839

Nisil

Kennaway et al. Genes and Development (2012) 26, 92-104.
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Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of “self” for
the prokaryotic cell. In addition they provide an additional tool to facilitate the creation of physical
maps of DNA

Type Il restriction enzymes (most commonly used in Biotechnology) are only able to restrict DNA
any methylase activity (if any) is present on a separate protein.

Type Il enzymes are usually dimeric proteins, and have a variety of digest patterns.

Restriction characteristics. Blunt- , 5' and 3' "sticky- ends". Dpnl (meth) or Dpnl|

— EcoRI recognizes

-1 “GAATTC” palindrome
TYPE I



https://www.neb.com/tools-and-resources/video-library?device=modal&videoid=%7B65d67900-1585-4626-97b6-0382646e2f8c%7D
https://www.neb.com/tools-and-resources/video-library?device=modal&videoid=%7B71eace7c-671d-4ce2-979d-31737e6c3c26%7D&rand=0.19667697906294446

Restriction Endonucleases: Restriction endonuclease provide an additional tool to facilitate the
creation of physical maps of DNA

Type lll restriction enzymes are similar to Type | enzymes, they also have an ATPase requirement
and differ mainly in that their M and S subunits are combined into one ~75kDa subunit, with the
additional R subunit being ~108kDa. Again these enzymes are Bl-functional enzymes, normally as
heterodimers, which can methylate and/or restrict simultaneously, although the methylase
subunits can often work on its own. Methylation only occurs on one strand.

Usually the site of restriction is removed from the recognition site. with the enzyme cutting often
cuttingh some 24-28 bases down from recognition site, eg. EcoP1 and EcoP15, and Hinfin

Haemophilus influenzae.

5 AGACC - 23-NNN-/- N
3 TGTGG - 23- -NNNNN 5

TYPE I

40
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Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of “self” for

the prokaryotic cell.

EcoRlI
cuts at
red arrows

DNA |

CGATCCAGGAATTCATCCAGCC
GCTAGGTCCTTAAGTAGGTCGG

:

AGGCTCTAGAATTCTTCTAGCT
TCCGAGATCTTAAGAAGATCGA

|
AATTCTTCTAGCT
GAAGATCGA
AGGCTCTAG
TCCGAGATCTTAA

AATTCATCCAGCC
GTAGGTCGG
CGATCCAGG
GCTAGGTCCTTAA
-

CGATCCAGGAATTCTTCTAGCT
GCTAGGTCCTTAAGAAGATCGA

-




|
Digested Digested Digested
Fragment A + \ Vector B Vector A

Assembled
DNA

Digested
Vector B

In using these Restriction enzymes to clone fragments of DNA into cloning vectors there are

number of variables that need to be considered.

Size of restriction recognition site -will affect frequency of site within any given DNA

sequence.

G/C content of restriction site vs. G/C content of DNA to be restricted.

Time

Compatability of ends

Ability to KNOW that you have stably cloned a fragment of DNA into a plasmid and that it is

maintained within a cell.

42
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Desirable attributes of "ideal” cloning vectors:

Use of E.coli as the preferred host for genetic manipulations has definitely biased the choice of vectors and
choice of gene transfer.

|deal cloning vectors do not exist in nature and, while most of the ones used are derived from bacteria in the
wild, they have themselves been genetically engineered to accommodate man's purpose.

Replicates autonomously in bacterial host of choice, usually E. coli, and is not too large

Encodes for multiple drug resistances. EcoRlI
Clal
Encodes for various and numerous "single" restriction sites SsAla“' Hindlll £cory
p ~ /Nhe
Has a relatively high copy number. \ BamH|
Pwul \\\ Sphl
Pstl \ Sall
Ppal tet’ | Xmalll
\ Nrul
| BspMI
~ _Bsml
: ori /Sty
pPBR322 used to foot the bill. Aval
Maintained at ~40-50 copies/cell Ball
Enodes for 2 distinct drug resistances il | BspMl
Has a number of single sites. Ndel . Pwull
Snal " Tth111l

By convention EcoR | site defines "0"

Figure 20.4 Structure of E colf plasmid cicning vector pBR322, a circular DNA molecule
4.36 <b in size. The kcations of unique resTiction enzyme cleavage skes, the orgn (o)
of ropcaton, and the Gones that con‘er resistance 1o the aridiotics anpicilin (any’)
and tracycine (le¥) are shown on the map of the plasmid DNA molecule.

Copyrant 2000 Jotw Wiey s Scea Inc



RESEARCH METHOD

| DNA taken up by Phenotype for | Phenotype for
I«anHI 5 e ; s it ;
amp® and tet® E. coli ampicillin tetracycline
None Sensitive Sensitive
4 —
ok O — Foreign Sensitive Sensitive
Foreign DNA only
DNA
__ BamHI pBR322 Resistant Resistant
plasmid
— @ pBR322 Resistant Sensitive
recombinant
04 plasmid

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 16.6 Marking Recombinant DNA by Inactivating a Gene
© 2004 Sinauer Associates, Inc. and W. H, Freeman & Co.



EcoRlI
Clal.
Aatll ,ledIII EcoRV

0t O 1 R

_BamH|
Sphl
- Sall

Pvul .
Pstl .

Ppal- tet’ Xmalll
- Nrul
‘BspMI
//\ Bsml
, Sty
\ AT Aval
/,.(/ Ball
- BspMII
Afllll =)
Ndel PvuII

Snal " Tih111]

Figure 20.4 Structure of £ coff plasmid cicning vecto pBR322, a circlar DNA molecule
4.36 <b in size. The locations of unique resriction enzyme cleavage siies, the origin (on)
of repicaton, and the genes that con'er resistance to the artibiotics ampicilin (any’)
and tracycine (le¥) are shown on the map of the plasmid DNA molecule.

Copyrait 2000 Jotva Wiey anvd Soea Ine
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OH l O I O._ OH
OH OH

Lactose

CH,OH CH,OH
OH O. OH ' O. OH
OH OH
OH
OH OH

D-galactose D-glucose
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Endogenous
promoter reporter gen

LacZ

v

CH,0H Cl  Br Cl Br H O Cl
HO o _o B-D-galactosidase HO R N Br
61 , SR L,
b H N " dimerization Br N
H
H OH H H ca  ©
5-bromo-4-chIoro-3-in§olyl- H,0 5-bromo-4-chloro-3-hydroxyindol 5,5’-dibromo-4,4’-qighloro—indigo
B-D-galactopyranoside (Blue precipitate)
CH,0H
(X-gal) HO O OH
oH! H
H .
H OH

-D-galactose
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HindIII
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BamHI

4359029 4g¢ /

375

Sall

Pstl e

1000

2000

lacZis 3,075 bp

pUC18
vector
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HindIII
EcoRI / ECoRV

BamHI

4359029 4g¢ /

375

Sall

Pstl e

1000

2000

lacZis 3,075 bp

pUC18
vector
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Endogenous
promoter reporter gen

LacZ

v

CH,0H Cl  Br Cl Br H O Cl
HO o _o B-D-galactosidase HO R N Br
61 , SR L,
b H N " dimerization Br N
H
H OH H H ca  ©
5-bromo-4-chIoro-3-in§olyl- H,0 5-bromo-4-chloro-3-hydroxyindol 5,5’-dibromo-4,4’-qighloro—indigo
B-D-galactopyranoside (Blue precipitate)
CH,0H
(X-gal) HO O OH
oH! H
H .
H OH

-D-galactose
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B—D-g%osidase
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Inactive
B-Galactosidase
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Endogenous
promoter

lacZ’

BE==wEESTTo
IGCRLEH LA
N\ /7

| — lac promoter

pUC18
vector
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Endogenous
promoter

lacZ’

amp”
2.7 kb

or

pUC18
vector
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Endogenous

—
promoter reporter gen
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e —

Inactive
B-Galactosidase

F ‘plasmid

57



Endogenous

—
promoter reporter gen
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pGEM~-T Easy
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DNA Sequencing Core Facility

Ping L Jiang (pjiang@gsu.edu) /4044135370

What happens to Your DNA Ideal Results
Principle of DNA sequencing ) Results that are not so great
*Sanger sequencing (dideoxy/enzymatic method) ’ o Y
|
*Cyclic sequencing, PCR steps, one primer i il
WTEEER, e iieining A1 ) i
*Dideoxynucleotides stop the new strand b 5
. High GT Possible secondary structure
(terminator)
*Fluorescent labeling or ddNTPs - = - B ——r —r
Step1. Sequencing reaction: it - 1 1 1
*Fragments separated by gel or capillary — DNA template + BigDye v3.1 o "
*Electrophoresis (dNTPs, labeled ddNTPs, DNA TR ——
polymerase) + Sequencing primer (+ Tt e Insertion, deletion or multiple colonies Heterozygotes / multiple colonies
DMSO for high GC and repeats) +
Sequencing buffer and DD Water
Step 2. Cyclic sequencing Step 4. Sequencing run Troubleshooting 1: Template problems Troubleshooting 3:
— PCR cycles — Capillary electrophoresis cleaning problems
— Primer Tm optimization annealing -9 SamflffTE"e run R " — = = = T = -
L 60¢C for BigDye v3.1. [ i
Instruments & applications )
Step 3. Purification of the reaction to " | Too little template residual ddNTPs after sequencing
get rid of extra dye and salts. -i) reaction cleanup
— Biomek NX CleanSEQ magnetic (S L = ) . SETINTEE v .
bead. Ll S ooy
— Ethanol Precipitation . ¢ a
Step 5. After run h |
— Checking the files with sequencing Too much template Poly-T T-blob
analysis program. -
- Sending the results. Il T « Contamination problems
« salt, detergent, ethanol, phenol,
el CATARA I RIAL Y o chloroform, PCR primer Proteins plia
Current instrument—ABI 3730 DNA, Analyzer, 48 capillary G-blob
array How to read your sequence
reading fength—750 bp. Data sent either as a .Seq file (chromatogram) or a .txt file (Text File) Too many repeats
* Chromatogram = trace file
-when doing sequencing assembly, use trace files! blesh )
-when doing mutation studies, use trace files! TrOUbIeShOOtmg 2: Primer problems Troubles OOtmng 4
« Text file has everything including the “bad resolution” area Sequencer problems
-usually reliable sequence is 600-750 nucleotides, sometimes more. S B
Biomek NX . . . X . SR e =T L. Ce
dﬁ";d salt removal -there might be mistakes in text file, especially places of I ! AT | P SR |
heterozygotes il sl 1 { . . =
Software to view chromatogram: R
I _d‘;’:";"“m"s Chromas (http://www.technelysium.com.au/chromas.html) Primer dimer No binding site 4 recol e canil
ABI 3100 DNA, Analyzer, lasmi . . . . L 5 Bad resolution in the capillan
16 capillary array. v PCR amplicons BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) plary
BAC/PAC/Cosmid DNA

Gene walking

When you identify problems in your results, please discuss possible solutions with us.
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OH OH

Ribonucleic acid (RNA)
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Deoxyribonucleic acid (DNA)
Base=A, C, GorU



HO Base HO Base
—@ —@

OH OH OH
Ribonucleic acid (RNA) Deoxyribonucleic acid (DNA)
Base=A,C, GorT Base=A,C,GorU

5=3
direction

O
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phosphate Q= P O
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Simple, Natural Chemistry

5"

Example:

N e l’&
Temp'ate technologies

'!hermoTF:sher Proprietary & Confidential
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~

0 =§— I—(I: —o\<0)/ BASE  gideoxy nucleotide

H H )

DNA

AATCTGGGCTACTCGGGCGT

DNA POLYMERASE
+ 4 dNTP CGCA LABELED

+ ddATP “ PRIMER

AGCC GCGT
8

ATGAGCC GCGT
UL UL L LL®
'GACCCGATGQGCC GCGT

18 AGACCCGATGAGCC GCGT



DNA sequencing

The dideoxy approach

https.//www.youtube.com/watch ?v=bEFLBf5WEftc

15
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DNA Genetic Analysis / Sequencing
(ABI/ Life technologies) Model 3500xl






CGCA

1 Reaction mixture
» Primer and DNA template > DNA polymerase
» ddNTPs with flourochromes » dNTPs (dATP, dCTP, dGTP, and dTTP)

Template
S ddNTPs
~~— oITTP @
SICTP @
GdATP —@
SIGTP @

2 Primer elongation
and chain termination

7T T T T

7Y L e e e e e e

ol LI 2 B I e e e e .

T¥ LI A e e e e e e e

S o i o 2 o o e e e e e

\/

3 Capillary gel electrophoresis
separation of DNA fragments

Capillary gel

Detector o '
f )
=

| % Laser detection of flourochromes
‘ |, | and computational sequence analysis
T |
\ 'l
'\.\.,J.‘.L« K\,J'\_, ;‘\a,A,
Chromatograph

ATTP @
AICTP @
AHATP @
IGTP @

70



A Reaction mixture
» Primer and DNA template

» DNA polymerase

» ddNTPs with flourochromes » dNTPs (dATP, dCTP, dGTP, and dTTP)

Primer

gy F

7 bbb

Tempiate
ddNTPs
TTP @
GICTP @
GIATP —g
GIGTP @

2 Primer elongation
and chain termination

AN

|
\
‘ c
\

a ¢ ©
»3503030_‘

b b Lot v

R i ket

3 Capillary gel electrophoresis
separation of DNA fragments

apillary gel

‘.A

Detector ‘

@ Laser detection of flourochromes
and computational sequence analysis
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Sanger Sequencing

- Ideal for single gene assays
+ Target gene candidates

Single-gene (few amplicons)

- Few amplicons, few samples
- Bidirectional sequencing

» Can be used to confirm
variants from PGM

technaolagies
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Sanger Sequencing

+ ldeal for single gene assays
+ Target gene candidates

Single-gene (few amplicons)
p53

am—
\/

+ Few amplicons, few samples
- Bidirectional sequencing
+ Can be used to confirm

variants from PGM gz
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Automated Sanger Sequencing using the 3500xI Genetic Analyzer




Last Updated: Monday, 14 April 2003, 16:01 GMT 17:01 UK

E-mail this to a friend & Printable version

Human genome finally complete
By Ivan Noble

BBC News Online science staff The BBC's Sue Nelson

. . . "British scientists contributed
The biological code crackers sequencing the human almost one third of the human
genome have said they have finished the job - two years genome"
ahead of schedule. I3 watch

Their announcement came less
than three years after a "rough
draft" was published to
worldwide acclaim.

SEE ALSO

¥ 'Secret of life' discovery turns 50
27 Feb 03 | Science/Nature

* DNA databases 'no use to
terrorists'
15 Jan 03 | Science/Nature

* Mouse clues to human genetics
04 Dec 02 | Science/Nature

* Genome man to create new life

When UK Prime Minister Tony
Blair and then US President Bill
Clinton hailed the publication of
the draft in June 2000, 97% of _

21 Nov 02 | Science/Nature

the "book of life" had been , : . b i
Decoding using the power of robotics Scientists crack human code

read. and computers (Image by The 26 Jun 00 | Science/Nature
Wellcome Trust Sanger Institute)

The decoding is now close to RELATED INTERNET LINKS
100% complete. The remaining tiny gaps are considered too * DNA 1953-2003
costly to fill and those in charge of turning genomic data into * Nature: 50 years of DNA

medical and scientific progress have plenty to be getting on ¥ Wellcome Trust Sanger Institute

with. * NIH National Human Genome
Research Institute

The Wellcome Trust Sanger Institute, the only British * Celera Genomics

institution taking part in the international effort, completed The BBC is not responsible for the

almost a third of the sequence - the biggest contribution by a  content of external internet sites
single institution. TOP SCIENCE & ENVIRONMENT
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