TUE WED THU FRI	WED	TUE	MON	SUN
28 29 30 31	29	28	27	June 26
			9:00-10:00am Virtual Program Orientation for Summer Institute Online Modality	
05 06 07 08	06	05	04	July 03
uddy Meet Free Day 8:30-11am: BIOL4905 DNA PREPARATION	Free Day	8:30-10:00am -Welcome Reception and Buddy Meet & Greet Event	Holiday (Independence Day)	
12 13 14 15	13	12	11	10
IICS II PROTEOMICS III RNA PREPARATION Virtual Independence		8:30-11am:BIOL4905 PROTEOMICS II	8:30-11am:BIOL4905 PROTEOMICS I	
	8-10:20pm: Afternoon course	8-10:20pm: Afternoon course	8-10:20pm: Afternoon course	
19 20 21 22	20	19	18	17
Next Gen. Sequencing Automated Midterm Break Next Gen. Sequencing 8-10:20pm: Afternoon course	Midterm Break	8:30-11am:BIOL4905 DNA Sequence Analysis 8-10:20pm: Afternoon course	8:30-11am:BIOL4905 qPCR / ROBOTS 8-10:20pm: Afternoon course	
26 27 28 29	27		25	24
ay II Nanostring Flow Cytometry FINALS	Nanostring	8:30-11am:BIOL4905 Microarray II 8-10:20pm: Afternoon course	8:30-11am:BIOL4905 Microarray I	
			8-10:20pm: Afternoon course	
02 03	03	02	August 01	31
Grades available in PAWS	Grades available in PAWS		9:00-10:00am: Closing Reception	

Capillary DNA Sequencers (ABI/Life Technologies) Model 3500xl

B form DNA

2.0 nM dia (20 Á)
0.36 nM (3.6 Á)
between bases
~10 bases per turn antiparallel strands
bases perpendicular to axis

Simple, Natural Chemistry

0284VC02_5A

There are three basic fates of DNA as it enters the bacterial cell.

- 1) It is degraded rapidly due to host defense mechanisms.
- 2) It is integrated into the host chromosome by recombination (homologous or non-homologous).

 The DNA is able to circularize and replicate independently (autonomously) from the host chromosome (i.e. it contains an origin of replication that is recognized by host replicating enzymes).

Plasmids / R-factors: Extrachromosomal, self replicating or autogenous replicating, covalently closed, circular pieces of dsDNA. They can, sometimes be integrated into the host chromosome, and if so they are often called and **episome**.

Plasmids of 3,000 - 5,000 **bp**, often have a high copy number (15 - 100 copies per cell). Plasmids of 4,000 - 300,000 bp (300 **<u>k</u>bp**), are as common in nature, but less highly copied per cell(one or two per cell) and (due to these factors) are less easily manipulatable.

Plasmids / R-factors: Extrachromosomal, self replicating or autogenous replicating, covalently closed, circular pieces of dsDNA. They can, sometimes be integrated into the host chromosome, and if so they are often called and **episome**.

Plasmids of 3,000 - 5,000 **bp**, often have a high copy number (15 - 100 copies per cell). Plasmids of 4,000 - 300,000 bp (300 **kbp**), are as common in nature, but less highly copied per cell(one or two per cell) and (due to these factors) are less easily manipulatable.

Plasmids are <u>not</u> named and grouped by size, however, or even by DNA homology, but by.....their "**incompatibility**" or **INABILITY TO CO-EXIST**

eg. IncP plasmids have a broad-host range and include the IncQ or IncP4 group of plasmids.

occurs in any number of ways, but

normally affects either the initiation of replication or the control of the attachment of plasmids to the bacterial membrane (which, for some, or the transfer and/or mobilization of plasmids through the pilus during congugation. In effect, potentially any shared characteristic that is required for efficient segregation of low copy number plasmids into the two daughter cells. Thus, at its core, incompatibility can be anything that provides an element of "competition" -gives rise to selection of one "incompatible" plasmid over another

Figure 1

Two incompatible plasmid clones will have small differences that cause one to have a faster replication rate, or increased toxicity, over the other. This is said to cause the plasmids to be replicated assymetrically, contributing to the eventual loss of one of the plasmids.

Figure 1

Two incompatible plasmid clones will have small differences that cause one to have a faster replication rate, or increased toxicity, over the other. This is said to cause the plasmids to be replicated assymetrically, contributing to the eventual loss of one of the plasmids.

Figure 1

Two incompatible plasmid clones will have small differences that cause one to have a faster replication rate, or increased toxicity, over the other. This is said to cause the plasmids to be replicated assymetrically, contributing to the eventual loss of one of the plasmids.

Incompatibility Group	Plasmids
FI	F, R386
IS3	R1
	Col B-K99, Col B-K166
tra 99.2kbp/0 region IS <i>3</i>	R124
	R62, R64, R483 (at least 5 subgroups)
IS2	R391
- 75 kbp F plasmid 25 kbp -	R46
(F factor)	R724
	RP4, RK2
oriT	RSF1010
50 kbp	R401
e 2012 Planton Education, Inc.	R388, S-a

INCOMPATIBILITY GROUP P PLASMIDS: Genetics, Evolution, and Use in Genetic Manipulation

Christopher M. Thomas and Christopher A. Smith

Department of Genetics, University of Birmingham, P.O. Box 363, Birmingham B15 2TT, England

CONTENTS

١

INTRODUCTION	77
MOLECULAR ANALYSIS OF RK2/RP4/RP1	78
Replication Functions	81
Additional Stable Inheritance Functions	86
Conjugal Transfer Functions	87
OTHER IncP PLASMIDS	89
Division of the IncP Plasmids into Two Subgroups	89
The IncP α Subgroup	89
The IncPβ Subgroup	89
Relationship Between the Subgroups	91
USE OF IncP PLASMIDS IN GENETIC MANIPULATION	92
Chromosome Mobilization	92
Transposon Mutagenesis	93
Cloring Vectors	93

Plasmid	Size (kb)	IncP-1 subgroup	Resistances	Resistance genes	Detected transposons	Reference/accession No.
pAKD1	58,246	IncP-1β	Sp, Sm, Su, Hg	aadA, sul1, merE	Tn21-like transposon	Sen et al. (2011)/JN106164.1
pB2/pB3#	60,732/56,167	IncP-1β	Aminoglycosides, β-lactam, Cm, Su, Tc, quaternary ammonium compounds	aadA2, bla _{NPS_2} , cmIA1, sul1, tetA(C), tetR(C), qacE∆1	Tn-tet, Tn402	Heuer et al. (2004) /NC_006388.1
pB4	79,370	IncP-1β	β-lactam, tripartite multi-drug resistance (MDR) efflux system, Sm, Em, Chr	bla _{NPS_1} , strAB, mexCD-oprJ, chr	Tn <i>5393c</i> , Tn <i>5719</i>	Dröge et al. (2000), Tauch et al. (2003) /NC_003430.1
pB5	64,696	IncP-1a	Sm, Tc, Km, Gm, Su, quaternary ammonium compounds	aacA4, aacC1, tetA, tetR, aphA, sul1, qacE∆1	nd	Dröge et al. (2000); Szczepanowski et a (2011)/NC_019020.1
pB6	58	IncP-18	Tc, Sm, Sp, Cm, Su	nd	nd	Dröge et al. (2000)
pB8	57,198	IncP-1β	Sm, Sp, β-lactam, Su, quaternary ammonium compounds	aadA4, oxa2, sul1, qacE∆1, qacF	Tn <i>5501</i> , "cryptic" Tn, Tn <i>402/</i> Tn <i>5090</i> , Tn <i>QAC/</i> (Tn <i>3</i> family), Tn <i>501/</i> Tn21	Schlüter et al. (2005)/NC_007502.1
pB10	64,508	IncP-1β	β-lactam, Su, Sm, Tc, quaternary ammonium compounds, Hg	oxa2, sul1, strAB, tetA, qacE Δ 1, mer	Tn <i>5393c</i> , Tn <i>1721</i> , Tn <i>501</i>	Schlüter et al. (2003)/NC_004840.1
pB11	66,911	IncP-1a	Tc, Ap, Km, Hg	tetA, tetR, aphA, merE	Tn <i>501,</i> Tn <i>5053</i>	Dröge et al. (2000), Szczepanowski et a (2011)/CP002152.1
pB12	64,393	IncP-1β	Tc, Sm, Sp, Em, β-lactam / Su, quaternary ammonium compounds	tetA, aacA4, oxa2, sul1, gacE Δ 1	Tn21, Tn402	Dröge et al. (2000), Sen et al. (2012) /JX469826.1
pTB11	68,869	IncP-1a	Aminoglycosides, β -lactam, Tc	aphA, aadA1, aacA4, oxa2, tetA, tetR	Tn <i>402</i> / (Tn <i>5090</i>), Tn <i>1721,</i>	Tennstedt et al. (2005)/NC_006352.1
pMCBF1	62,689	IncP-1ζ	Multi-drug efflux (MDE) outer membrane prot. NodT family, Hg	oprN, merE	Tn <i>5053</i>	Norberg et al. (2011)/AY950444.1
RP4/RK2	60,099	IncP-1a	Tc, Km, Ap	tetA, aph	Tn4371, Tn1	Pansegrau et al. (1994)/L27758.1
pTH10	70	IncP-1a	Tc, Km, Ap	nd	nd	Harayama et al. (1980)
R751	53,423	IncP-1 _β	Тр	dhfrllc	Tn402/Tn5090,Tn501	Thorsted et al. (1998)
pKJK5	54,383	IncP-1ɛ	Tc, Tp, aminoglycosides, Su, Sp, quaternary ammonium compounds	tetA, tetR, dfrA1, aadA11b, sul1, qacE∆1	Tn402	Bahl et al. (2007)/NC_008272.1
pG527	80,762	IncP-1α	Aminoglycosides, Km, Sm, β-lactam, Tc	aadA1, aphA, sph, bla _{TEM-67} , tetA, tetR	Tn <i>3</i> , Tn7, Tn <i>1721</i>	Sen et al. (2012)/JX469830.1
pSP21	72,683	IncP-1α	Tc, Km, aminoglycosides, β -lactam	tetA, tetR, aph, aadA1, aacA4, oxa2	Tn <i>402</i>	Pansegrau et al. (1994), Szczepanowski et al. (2011) /NC_019021 .
pBS228	89,147	IncP-1a	Aminoglycosides, Sp, Tp, Tc, β-lactam, Hg	aadA, dhfr, tetA, bla _{TEM-67} , aph, merE	Tn 1013, Tn 5718, Tn 1, Tn 7	Haines et al. (2007)/NC_008357.1
BRA100	56,265	IncP-1β	Aminoglycosides, Su, quaternary ammonium compounds, Hg	aacA4, strAB, sul1, qacE Δ 1, merE	Tn <i>63051</i> (Tn <i>3</i> family)	Unpublished/CP003505
pWEC911	74,056	IncP-1	Tc, β-lactam, Km, Hg	tetA, bla _{TEM-67} , aphA, merE	nd	Sen et al. (2012)/JX469833.1
pKSP212	54,342	IncP-1	Aminoglycosides, Su, Hg	aac(6)-lb, sul1, merE	Tn3	Sen et al. (2012)/JX469831.1
pBRSB222	36,880	IncP-1	Aminoglycosides, β-lactam, Su, guaternary ammonium compounds	aadA5, oxa2, sul1, qacE Δ 1	nd	Sen et al. (2012)JX469825.1
pKS208	50,604	IncP-1	Aminoglycosides, Km, β-lactam	aac(6)-lb, aphA1, pEC-IMPQ_139	Tn 1525, Tn 5053/Tn 402	Sen et al. (2012)/JQ432564.1

Ap, ampicillin; Cb, carbenicillin; Cm, chloramphenicol; Gm, gentamicin; Km, kanamycin; Nx, nalidixic acid; Sm, streptomycin; Sp, spectinomycin; Su, sulfanilamide; Tc, tetracycline; Tp, trimethoprim; Tm, tobramycin; Hg, inorganic mercury; nd, not determined. * Plasmids pB2 and pB3 differ only by a duplication of a tetA(C)-tetR-tnpAIS26 fragment in pB2.

Plasmid	Size (kb)	IncP-1 subgroup	Resistances	Resistance genes
pAKD1	58,246	IncP-1β	Sp, Sm, Su, Hg	aadA, sul1, merE
pB2/pB3#	60,732/56,167	IncΡ-1β	Aminoglycosides, β-lactam, Cm, Su, Tc, quaternary ammonium compounds	aadA2, bla _{NPS_2} , cmIA1, sul1, tetA(C), tetR(C), qacE∆1
pB4	79,370	IncP-1β	β-lactam, tripartite multi-drug resistance (MDR) efflux system, Sm, Em, Chr	bla _{NPS_1} , strAB, mexCD-oprJ, chr
pB5	64,696	IncP-1α	Sm, Tc, Km, Gm, Su, quaternary ammonium compounds	aacA4, aacC1, tetA, tetR, aphA, sul1, qacE∆1
pB6	58	IncP-1β	Tc, Sm, Sp, Cm, Su	nd
pB8	57,198	IncP-1β	Sm, Sp, β-lactam, Su, quaternary ammonium compounds	aadA4, oxa2, sul1, qacE∆1, qacF
pB10	64,508	IncP-1β	β-lactam, Su, Sm, Tc, quaternary ammonium compounds, Hg	oxa2, sul1, strAB, tetA, qacE∆1, mer
pB11	66,911	IncP-1α	Tc, Ap, Km, Hg	tetA, tetR, aphA, merE
pB12	64,393	IncP-1β	Tc, Sm, Sp, Em, β-lactam / Su, quaternary ammonium compounds	tetA, aacA4, oxa2, sul1, qacE∆1

Plasmid	Size (kb)	IncP-1 subgroup	Resistances	Resistance genes
pAKD1	58,246	IncP-1β	Sp, Sm, Su, Hg	aadA, sul1, merE
pB2/pB3#	60,732/56,167	IncP-1β	Aminoglycosides, β-lactam, Cm, Su, Tc, quaternary ammonium compounds	aadA2, bla _{NPS_2} , cmlA1, sul1, tetA(C), tetR(C), qacE∆1
pB4	79,370	IncP-1β	β-lactam, tripartite multi-drug resistance (MDR) efflux system, Sm, Em, Chr	bla _{NPS_1} , strAB, mexCD-oprJ, chr
pB5	64,696	IncP-1a	Sm, Tc, Km, Gm, Su, quaternary ammonium compounds	aacA4, aacC1, tetA, tetR, aphA, sul1, qacE∆1
pB6	58	IncP-1 _β	Tc, Sm, Sp, Cm, Su	nd
pB8	57,198	IncP-1β	Sm, Sp, β-lactam, Su, quaternary ammonium compounds	aadA4, oxa2, sul1, qacE∆1, qacF
pB10	64,508	IncP-1β	β-lactam, Su, Sm, Tc, quaternary ammonium compounds, Hg	oxa2, sul1, strAB, tetA, qacE∆1, mer
pB11	66,911	IncP-1α	Tc, Ap, Km, Hg	tetA, tetR, aphA, merE
pB12	64,393	IncP-1β	Tc, Sm, Sp, Em, β-lactam / Su, quaternary ammonium compounds	tetA, aacA4, oxa2, sul1, qacE∆1

Gene(s)	Modification methyltransferase	Recognition sequence ^a	Number in genome ^b	Restriction endonucleases ^C
hsdSM	M.EcoK	-AAC(N ⁶)GTCG-	595	EcoKI
dam	Dam	-GATC-	19,120	DpnI, DpnII, Sau3A
dcm	Dcm	-CCWGG-	12,045	EcoRII, BstNI
yhdJ	YhdJ	-ATGCAT-	839	NsiI

Gene(s)	Modification methyltransferase	Recognition sequence ^a	Number in genome ^b	Restriction endonucleases ^C
hsdSM	M.EcoK	-AAC(N ⁶)GTCG-	595	EcoKI
dam	Dam	-GATC-	19,120	DpnI, DpnII, Sau3A
dcm	Dcm	-CCWGG-	12,045	EcoRII, BstNI
yhdJ	YhdJ	-ATGCAT-	839	NsiI

Gene(s)	Modification methyltransferase	Recognition sequence ^a	Number in genome ^b	Restriction endonucleases ^C
hsdSM	M.EcoK	-AAC(N ⁶)GTCG-	595	EcoKI
dam	Dam	-GATC-	19,120	DpnI, DpnII, Sau3A
dcm	Dcm	-CCWGG-	12,045	EcoRII, BstNI
yhdJ	YhdJ	-ATGCAT-	839	NsiI

Gene(s)	Modification methyltransferase	Recognition sequence ^a	Number in genome ^b	Restriction endonucleases ^C
hsdSM	M.EcoK	-AAC(N ⁶)GTCG-	595	EcoKI
dam	Dam	-GATC-	19,120	DpnI, DpnII, Sau3A
dcm	Dcm	-CCWGG-	12,045	EcoRII, BstNI
yhdJ	YhdJ	-ATGCAT-	839	NsiI

Gene(s)	Modification methyltransferase	Recognition sequence ^a	Number in genome ^b	Restriction endonucleases ^C
hsdSM	M.EcoK	-AAC(N ⁶)GTCG-	595	EcoKI
dam	Dam	-GATC-	19,120	DpnI, DpnII, Sau3A
dcm	Dcm	-CCWGG-	12,045	EcoRII, BstNI
yhdJ	YhdJ	-ATGCAT-	839	NsiI

Gene(s)	Modification methyltransferase	Recognition sequence ^a	Number in genome ^b	Restriction endonucleases ^C
hsdSM	M.EcoK	-AAC(N ⁶)GTCG-	595	EcoKI
dam	Dam	-GATC-	19,120	DpnI, DpnII, Sau3A
dcm	Dcm	-CCWGG-	12,045	EcoRII, BstNI
yhdJ	YhdJ	-ATGCAT-	839	NsiI

Gene(s)	Modification methyltransferase	Recognition sequence ^a	Number in genome ^b	Restriction endonucleases ^C
hsdSM	M.EcoK	-AAC(N ⁶)GTCG-	595	EcoKI
dam	Dam	-GATC-	19,120	DpnI, DpnII, Sau3A
dcm	Dcm	-CCWGG-	12,045	EcoRII, BstNI
yhdJ	YhdJ	-ATGCAT-	839	NsiI

Gene(s)	Modification methyltransferase	Recognition sequence ^a	Number in genome ^b	Restriction endonucleases ^C
hsdSM	M.EcoK	-AAC(N ⁶)GTCG-	595	EcoKI
dam	Dam	-GATC-	19,120	DpnI, DpnII, Sau3A
dcm	Dcm	-CCWGG-	12,045	EcoRII, BstNI
yhdJ	YhdJ	-ATGCAT-	839	NsiI
Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of "self" for the prokaryotic cell.

Type I restriction modification enzymes (first identified by Werner Arber and Dussoix in the1960's using lamda phage infection of *E. coli*) initially defined two different strains of *E. coli -E. coli*B and *E. coli* K12 (two *E. coli* strains that encode for slight, but specific variants of their **HSD system (Host Specificity Determinant)** -encoded by the *hsdR*, *hsdM*and *hsdS* genes).

These enymes are expressed together and generally require interactions with cofactors, such as S-Adenosyl methionine (AdoMet), hydrolyzed adenosine triphosphate (ATP), and magnesium (Mg²⁺) ions.

eg. EcoB recognizes TGA (N₈) TGCT. EcoK12 recognizes AAC(N6)GTGC

EM model for a Type I RM enzyme with DNA bound. HsdR (red), HsdM (blue and cyan), HsdS (yellow). ⁵ TG**A**NNNNNNNTGCT³ _{3'} ACTNNNNNN**A**CGA_{5'}

<u> TYPE I</u>

Kennaway et al. Genes and Development (2012) 26, 92-104.

Restriction Endonucleases: Restriction endonuclease provide an additional tool to facilitate the creation of physical maps of DNA

Type I restriction modification enzymes (first identified by Werner Arber and Dussoix in the1960's using lamda phage infection of *E. coli*) initially defined two different strains of *E. coli -E. coli*B and *E. coli* K12 (two *E. coli* strains that encode for slight, but specific variants of their **HSD system (Host Specificity Determinant)** -encoded by the *hsdR*, *hsdM*and *hsdS* genes).

These enymes are expressed together and generally require interactions with cofactors, such as S-Adenosyl methionine (AdoMet), hydrolyzed adenosine triphosphate (ATP), and magnesium (Mg²⁺) ions.

eg. EcoB recognizes TGA (N₈) TGCT, EcoK12 recognizes AAC(N6)GTGC

⁵ TG**A**NNNNNNTGCT³ _{3'} ACTNNNNNN**A**CGA_{5'}

DNA methyltransferases in E. coli K-12

Gene(s)	Modification methyltransferase	Recognition sequence ^a	Number in genome ^b	Restriction endonucleases ^C
hsdSM	M.EcoK.	-AAC(N ⁶)GTCG-	595	EcoKI
dam	Dam	-GATC-	19,120	DpnI, DpnII, Sau3A
dcm	Dcm	-CCWGG-	12,045	EcoRII, BstNI
yhdJ	YhdJ	-ATGCAT-	839	NsiI

EM model for a Type I RM enzyme with DNA bound. HsdR (red), HsdM (blue and cyan), HsdS (vellow) **Restriction Endonucleases:** Restriction endonuclease provide -in part- a determination of "self" for the prokaryotic cell. In addition they provide an additional tool to facilitate the creation of physical maps of DNA

Type II restriction enzymes (most commonly used in Biotechnology) are only able to restrict DNA any methylase activity (if any) is present on a separate protein.

Type II enzymes are usually dimeric proteins, and have a variety of digest patterns.

Restriction characteristics. Blunt-, 5' and 3' "sticky- ends". DpnI (meth) or DpnII

EcoRI recognizes

"GAATTC" palindrome

ΤΥΡΕ ΙΙ

Restriction Endonucleases: Restriction endonuclease provide an additional tool to facilitate the creation of physical maps of DNA

Type III restriction enzymes are similar to **Type I** enzymes, they also have an ATPase requirement and differ mainly in that their **M** and **S** subunits are combined into one ~75kDa subunit, with the additional R subunit being ~108kDa. Again these enzymes are BI-functional enzymes, normally as **heterodimers,** which can methylate and/or restrict **simultaneously**, although the methylase subunits can often work on its own. Methylation only occurs on one strand.

Usually the site of restriction is removed from the recognition site. with the enzyme cutting often cuttingh some 24-28 bases down from recognition site, eg. *Eco*P1 and *Eco*P15, and *Hinf* in

Haemophilus influenzae.

5' AGACC - 23-NNN-1- N 3' 3' TGTGG - 23-1-NNNNN 5'

Restriction Endonucleases: Restriction endonuclease provide -in part- a determination of "self" for the prokaryotic cell.

In using these Restriction enzymes to clone fragments of DNA into **cloning vectors** there are number of variables that need to be considered.

Size of restriction recognition site -will affect frequency of site within any given DNA sequence.

G/C content of restriction site vs. G/C content of DNA to be restricted.

Time

Compatability of ends

Ability to KNOW that you have stably cloned a fragment of DNA into a plasmid and that it is maintained within a cell.

Desirable attributes of "ideal" cloning vectors:

Use of *E.coli* as the preferred host for genetic manipulations has definitely biased the choice of vectors and choice of gene transfer.

Ideal cloning vectors do not exist in nature and, while most of the ones used are derived from bacteria in the wild, they have themselves been genetically engineered to accommodate man's purpose.

Replicates autonomously in bacterial host of choice, usually *E. coli*, and is not too large

Encodes for multiple drug resistances.

Encodes for various and numerous "single" restriction sites

Has a relatively high copy number.

pBR322 used to foot the bill. Maintained at ~40-50 copies/cell Enodes for **2 distinct** drug resistances Has a number of single sites.

By convention EcoR I site defines "0"

Figure 20.4 Structure of *E. coli* plasmid cloning vector pBR322, a circular DNA molecule 4.36 kb in size. The locations of unique restriction enzyme cleavage sites, the origin (*cri*) of replication, and the genes that confer resistance to the antibiotics ampicillin (*amp²*) and tatracycline (*let*⁹) are shown on the map of the plasmid DNA molecule.

Copyright 2000 John Wiley and Sons, Inc.

RESEARCH METHOD

Figure 20.4 Structure of *E. coli* plasmid cloning vector pBR322, a circular DNA molecule 4.36 kb in size. The locations of unique restriction enzyme cleavage sites, the origin (*cri*) of replication, and the genes that confer resistance to the antibiotics ampicillin (*amp²*) and tetracycline (*tel*⁴) are shown on the map of the plasmid DNA molecule.

lacZ is 3,075 bp

lacZ is 3,075 bp

reporter gen

LacZ

Endogenous

promoter

88

Inactive ß-Galactosidase

B-Galactosidase

58

pUC18 vector

β –D-galactosidase

through alpha - complementation

1473VA05_6B

(terminator)

Electrophoresis

array

16 capillary array.

DNA Sequencing Core Facility

Ping L Jiang (pjiang@gsu.edu) /4044135370

Ideal Results What happens to Your DNA Results that are not so great Principle of DNA sequencing - and a second •Sanger sequencing (dideoxy/enzymatic method) •Cyclic sequencing, PCR steps, one primer when doub. •Dideoxynucleotides stop the new strand High GT Possible secondary structure Chrmatogran •Fluorescent labeling or ddNTPs Step1. Sequencing reaction: •Fragments separated by gel or capillary - DNA template + BigDye v3.1 CTARTICULT CTARTICULT (dNTPs, labeled ddNTPs, DNA Theorem activities consistent carriers and carrier tac-epochesis at 214995 2020048 20212440 9920022 polymerase) + Sequencing primer (+ Insertion, deletion or multiple colonies Heterozygotes / multiple colonies Text file DMSO for high GC and repeats) + Sequencing buffer and DD Water **Troubleshooting 1: Template problems Troubleshooting 3:** Step 4. Sequencing run Step 2. Cyclic sequencing - Capillary electrophoresis **Cleaning problems** - PCR cycles - 96 samples in one run - Primer Tm optimization annealing and a subsequence of the second s 60°C for BigDye v3.1. **Instruments & applications** Step 3. Purification of the reaction to residual ddNTPs after sequencing Too little template No template get rid of extra dye and salts. reaction cleanup - Biomek NX CleanSEQ magnetic BREET TERE CAR TO ATRY CRASHES STR m. M. A. Drawn bead. - Ethanol Precipitation Marcon marcha Step 5. After run Too much template - Checking the files with sequencing Poly-T T-blob analysis program. - Sending the results. · Contamination problems · salt, detergent, ethanol, phenol, chloroform, PCR primer Proteins Current instrument—ABI 3730 DNA, Analyzer, 48 capilla G-hloh How to read your sequence Too many repeats reading length-750 bp. Data sent either as a .Seq file (chromatogram) or a .txt file (Text File) • Chromatogram = trace file -when doing sequencing assembly, use trace files! Troubleshooting 4: **Troubleshooting 2: Primer problems** -when doing mutation studies, use trace files! Sequencer problems · Text file has everything including the "bad resolution" area -usually reliable sequence is 600-750 nucleotides, sometimes more. Biomek N) ------there might be mistakes in text file, especially places of dye and salt removal heterozygotes Software to view chromatogram: Applications Chromas (http://www.technelysium.com.au/chromas.html) Primer dimer No binding site Plasmid DNA ABI 3100 DNA, Analyzer Bad resolution in the capillary BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) PCR amplicons BAC/PAC/Cosmid DNA Gene walking When you identify problems in your results, please discuss possible solutions with us.

Ribonucleic acid (RNA) Base= A, C, G or T Deoxyribonucleic acid (DNA) Base = A, C, G or U

Simple, Natural Chemistry

DNA sequencing

The dideoxy approach

https://www.youtube.com/watch?v=bEFLBf5WEtc

DNA Genetic Analysis / Sequencing (ABI/ *Life technologies*) Model 3500xl

Sanger Sequencing

- Ideal for single gene assays
- Target gene candidates

- Few amplicons, few samples
- Bidirectional sequencing
- Can be used to confirm variants from PGM

TE-LAINGRETORTALBOGGIGAAT TEGER ROTGERCOCCUCTIONER HEE CTOGRACE TORFORGE ROCC TOCCOEGERCOCCUCAGRACE AGAAACGAC I TGAAC TSO I I NG AARAGG 10 10 10 10 10 10 10 10 10 10 10 10 10 1
I we we have the set of the set o
EAR HOGOGIGAAAA HEGE GEECAGE ECCECTORE ECCECTORE ECCECTORE EAGAAAAAAAACE FAGESE FIGESESE GEECCE EEGGEE ECCESCE ECCESCE ECCEACE
130 140 150 160 170 180 190 200 210 220 230 240
<u>www.www.www.www.www.www.www.www.www.ww</u>
ICCC CHERCES TO GET TO REAL AND AND CONSTRUCT OF STORE OF SET TO THE CHERCE TO THE CHECCCC TO LAND AND TO SET TO THE CHECCCC TO LAND AND TO SET TO SET TO THE CHECCCCC TO LAND AND TO SET TO SET TO THE CHECCCCC TO LAND AND TO SET T
210 260 270 250 290 300 310 310 330 340 310 370
Mananda Baarin Mananan Mananan Manana Man
GRANEGRARING AN ACCOUNT INCOMENT ACCOUNTER ACCOUNT AND AN AND A
350 <u>350</u> +00 +10 +20 +30 ++0 +50 +60 +70 +50 +50
walder & warder and the warder of the second
C CHINGHICGG ARCATARGTH HAGAAACKCKCKCKCGTHIC IGGEGE ICTIGHTKG AIGTAAAIGIGE GGCALCCIG AGCTHCTAIGC IGTGHAGC ICHGTIGGTHIC
500 510 520 530 540 550 540 570 550 550 400 410
Martin Martin and march mart martin all and martin and martin and martin and martin and martin and martin and m
INALC RECECCERCECCE AND
420 430 440 450 460 670 480 450 700 710 720
Mar
C AAC TG AGAT AAT AAAGC AAAC AAT AAC ATT NG ATG ANG ANG ANG ANG ANG ANG ANG ANG ANG AN
2-1/14/1-10-10-10-10-10-10-10-10-10-10-10-10-10

Sanger Sequencing

- Ideal for single gene assays
- Target gene candidates

- Few amplicons, few samples
- Bidirectional sequencing
- Can be used to confirm variants from PGM

Automated Sanger Sequencing using the 3500xl Genetic Analyzer

E-mail this to a friend

Printable version

Human genome finally complete

By Ivan Noble BBC News Online science staff

The biological code crackers sequencing the human genome have said they have finished the job - two years ahead of schedule.

Their announcement came less than three years after a "rough draft" was published to worldwide acclaim.

When UK Prime Minister Tony Blair and then US President Bill Clinton hailed the publication of the draft in June 2000, 97% of the "book of life" had been read.

The decoding is now close to

100% complete. The remaining tiny gaps are considered too costly to fill and those in charge of turning genomic data into medical and scientific progress have plenty to be getting on with.

The Wellcome Trust Sanger Institute, the only British institution taking part in the international effort, completed almost a third of the sequence - the biggest contribution by a single institution.

Wellcome Trust Sanger Institute)

VIDEO AND AUDIO NEWS

The BBC's Sue Nelson "British scientists contributed almost one third of the human genome"

Watch

SEE ALSO

- Secret of life' discovery turns 50 27 Feb 03 | Science/Nature
- DNA databases 'no use to terrorists'
- 15 Jan 03 | Science/Nature
- Mouse clues to human genetics 04 Dec 02 | Science/Nature
- Genome man to create new life 21 Nov 02 | Science/Nature
- Scientists crack human code 26 Jun 00 | Science/Nature

RELATED INTERNET LINKS DNA 1953-2003

- Nature: 50 years of DNA
- Wellcome Trust Sanger Institute
- NIH National Human Genome Research Institute
- Celera Genomics

The BBC is not responsible for the content of external internet sites

```
TOP SCIENCE & ENVIRONMENT
```

