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Light Microscopy



Light Microscope
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Zeiss Primo Star
Binocular Microscope



Light Microscope
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Fluorescence
Microscopy



Epifluorescence Microscopy

The Majority of Fluorescence microscopes, especially those
used in Biology, are of the epifluorescence design

Light of the excitation wavelength is focused on the specimen
through the objective lens.

The fluorescence emitted by the specimen is also focused on
the detector by the objective lens

Since most of the excitation light is transmitted through the
specimen, ONLY reflected excitatory light reaches the
objective -together with the emitted light.
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Epifluorescence Microscopy

The Majority of Fluorescence microscopes, especially those
used in Biology, are of the epifluorescence design

Light of the excitation wavelength is focused on the specimen
through the objective lens.

The fluorescence emitted by the specimen is also focused on
the detector by the objective lens

Since most of the excitation light is transmitted through the
specimen, ONLY reflected excitatory light reaches the
objective -together with the emitted light.
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Epifluorescence Microscopy




Zeiss Axioimager 2 Fluorescence Microscope



Optical Filters

A diChrOIC filter, or interference filter is a color filter used to selectively
pass light of a small range of colors while reflecting other colors.


https://en.wikipedia.org/wiki/Interference_filter
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Filter_(optics)
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Reflection_(physics)

Optical Filters

Longpass Shortpass Bandpass
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Abbe’s diffraction limit (0.2 pm)
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Fig. 1: Abbe's diffraction limit (© Johan Jarnestad/The Royal Swedish Academy of Sciences)

Specialized Fluorescence techniques
(S limulated Emission Depletion Microscopy (



A STED (stimulated emission/depletion) micrograph image revealing actin (magenta) and
microtubules (cyan) of a young dissociated hippocampal neuron. Image by K. Jansen and E.
Katrukha, Kapitein Lab, Molecular and Cellular Biophysics, Utrecht University, The Netherland




Diffraction limited
microscopy
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Specialized Fluorescence techniques
(STimulated Emission Depletion Microscopy (STED)




Abbe’s diffraction limit (0.2 pm)
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Keyence BZX-Series
Automated Fluorescence
Microscope



Keyence BZ X700
Fluorescence

High Resolution Optics
Automated Microscope

All-in-One Fluorescence Microscope

The BZ-X700 can be configured to accommodate specific
research objectives. Capabilities include:

* Imaging in brightfield and phase contrast

+ Automated XYZ stitching of large histology sections
+ Screening and quantification of well plates

+ Time-lapse incubation for cell culture
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Scanning Electron Microscopy
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Abbe’s diffraction limit (0.2 ym)
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Atomic Force
Microscopy



Introduction/History

Atomic Force Microscope (AFM) is part of a larger
family of Scanning Probe Microscopes (SPM).
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Nature Nanotechnology 3, 261 - 269 (2008)
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Subject Categories: Molecular machines and motors | Nanobiotechnology |
Nanometrology and instrumentation | Structural properties

Atomic force microscopy as a multifunctional molecular

toolbox in nanobiotechnology
Daniel ). Miller! & Yves F. Dufréne?

With its ability to observe, manipulate and explore the functional
components of the biological cell at subnanometre resolution, atomic
force microscopy (AFM) has produced a wealth of new opportunities in
nanobiotechnology. Evolving from an imaging technique to a
multifunctional 'lab-on-a-tip', AFM-based force spectroscopy is
increasingly used to study the mechanisms of molecular recognition
and protein folding, and to probe the local elasticity, chemical groups
and dynamics of receptor-ligand interactions in live cells. AFM
cantilever arrays allow the detection of bioanalytes with picomolar
sensitivity, opening new avenues for medical diagnostics and
environmental monitoring. Here we review the fascinating
opportunities offered by the rapid advances in AFM,
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AFM Principle

Laser

segrnented
Photodicode

Cantileveat
with Tip

Atomic Force Microscope

Images in AFM are acquired by scanning
the surface of the sample with a
sharp tip.

The tip is located at the free end of a
flexible cantilever.

The cantilever’s movements are detected
by a laser beam that is reflected of the
back of the cantilever to a photodiode.

The photodiode then relays the
information to the computer which in
turn generates a topographical image
of the sample.

Forces between the tip and the sample
(normally < 10-9 N) cause the cantilever

to deflect.



force

[repulsive foce regime]

cttractive force regime]

contad mode  fapping mode moncontad mode

=

Detector and
Feedback

Electronics

Photodiode

La57
N

N

N /

.:\\ N \ P /

Sample Surface \::———'—\

. PZT Scanner

Cantilever & Tip

Atomic Force Microscope (AFM) operates by measuring attractive or repulsive forces between a probe
or “tip” and the sample. The tip is located at the end of a leaf spring or “cantilever”. A laser beam is reflected
off the cantilever. Any angular deflection of the cantilever caused by the change of the force between tip and
sample is represented by the angular deflection of the laser beam. Images are taken by scanning the
sample relative to the tip and measuring the deflection of the cantilever as a function of lateral position.
Different from traditional microscope, image from AFM is three dimensional.
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Premise of AFM... Hooke’s Law

VYV V¥
g %
" -

rFa

Hooke's law is a principle of physics which states that the force F
needed to extend or compress a spring by some distance X is
proportional to that distance.

Fig. 820. — Ressort spiral,

Thatis: F =kX where k is a constant factor characteristic of the spring,
its “stiffness”.


http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Spring_(mechanics)
http://en.wikipedia.org/wiki/Stiffness
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Modes of AFM Operation

AFM Principle >
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The cantilever carrying the tip is attached to a small glass “chip” that allows easy
handling.

There are essentially two designs for cantilevers, the “V” shaped and the single-arm
kind, which have different torsional properties. The length, width, and thickness of the
beam(s) determines the mechanical properties of the cantilever and provides for a
variety of types that are essentially classified by their force (or spring) constant and
resonance frequency: soft and low-resonance frequency cantilevers (A) are more
suitable for imaging in contact (and resonance mode in liquid), whereas stiff and high-
resonance frequency cantilevers (B) are more appropriate for resonance mode in air.
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Viewing the scanning tip
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MultiMode VIII from Bruker

The MultiMode VIII represents the “next generation” of the most field-
proven SPM. It performs the full range of atomic force microscopy
(AFM) and scanning tunneling microscopy (STM) techniques to measure
surface characteristics like topography, elasticity, friction, adhesion, and
magnetic/electrical fields.



Modes of AFM Operation
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Contact Mode

The contact mode where the tip scans the sample in close
contact with the surface is the common mode used in the
atomic force microscope. At this proximity to the object
being examined the force on the tip is “repulsive”, with a
mean value approximating

1 x 109 N.

This force is set by pushing the cantilever
against the sample surface with a

piezoelectric positioning element. .
The flexible cantilever scans across v

the surface and the tip is repulsed .
from the surface by strong “repulsive” \mc T
forces... which are countered by the onm, Seomration
piezoelectric capability of the AFM e A |

and thus measuring the contours of | Forea

the molecules at the surface.



Non Contact Mode

Non Contact mode is used in situations where the tip contact might
alter the sample in subtle ways. In this mode the tip is held in a
“hovering” pattern -vibrating slightly above its resonance frequency-
just above the sample surface. Attractive Van der Waals forces, acting
between the tip and the sample, are detected and topographic images
of the undulations of these forces are constructed as the tip scans over
the surface.

Unfortunately these “attractive” forces
from the sample are substantially weaker
than the forces used in contact mode.

Thus, the tip is given a small oscillation >
so that any significant change in Force v

oscillations can be used to amplify changes _— N

of small forces between the tip and the \|mermmemmw e
sample by measuring the change in _tonm_ T
amplitude, phase, or frequency of the \/// L Sepsrten
oscillating cantilever in response to force ‘ A

Force

gradients that are set up between the
cantilever and the sample.



“Tapping” Mode

Tapping mode is achieved by oscillating the cantilever assembly at or near the
cantilever's resonant frequency. This “ ” motion causes the cantilever to oscillate
with a high amplitude (typically greater than 20nm, but less than 200nm).

As the oscillating tip is then moved toward the surface it begins to almost (but not
quite) lightly touch, or “tap” the surface, the vertically oscillating tip alternately
contacts the surface and lifts off (generally at a

per second).This transient “contact” with the surface reduces the oscillation
amplitude, which can be used to identify and measure surface features.

As it moves toward the sample the attractive/repulsive forces alter the amplitude for
the piezoelectric oscillations, which are detected and compensated for by the
instrument.

Unlike “contact” and “non-contact” modes, when the tip “contacts” the surface, it has
sufficient oscillation amplitude to overcome the tip to sample adhesion forces.
Consequently, the use of tapping mode (as opposed to full contact mode) prevents
the tip from sticking to the surface and thus reduce damage to the tip during
scanning.



Measurement of Various Forces
To Define “Texture” of Samples

The cantilever starts out not touching the surface. If the cantilever
- in this region - feels a long-range attractive (or repulsive) force it
will deflect downwards (or upwards) before making contact with
the surface.

As the probe tip is brought very close to the surface, it may jump
into contact if it feels sufficient “attractive force” from the sample.

Once the tip is in contact with the surface, cantilever deflection will
increase as the fixed end of the cantilever is brought closer to the
sample.

If the cantilever is sufficiently “stiff’, the probe tip may indent into
the surface at this point. In this case, the slope or shape of the
contact part of the force curve can provide information as to the
elasticity of the sample surface.



4. After loading the cantilever to a desired force value, the process
is reversed. As the cantilever is withdrawn, adhesion or bonds
formed during contact with the surface may cause the cantilever to
adhere to the sample at some distance past the initial contact point
on the approach curve.

5. A key measurement of the AFM force curve is the point at which
the tip to surface adhesion is broken and the cantilever comes free
from the surface. This can be used to measure the “rupture force”
required to break the bond or adhesion, which again can be used to
define some form of texture to the material or sample under analysis.

One of the first uses of force measurements was to improve the
quality of AFM images by monitoring and minimizing the attractive
forces between the tip and sample.



Sample Preparation -Basic analysis

Deposition of buffer containing a divalent cation (eg. Ca2+ to
allow charged particles to adhere to the flat surface upon
which the sample is being analyzed..

Flat substrate:
1. Plain mica
2. Aminopropyltrimethoxy saline

(APTES)-treated mica

3. Glow discharged mica. ;

4. highly oriented pyrolytic graphic (HOPG).



Sample Preparation cont’d
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- sticky tape
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condensed air or in |
dessicator for ~ 2 hours
to overnight
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Resolution of AFM

Abbe’s diffraction limit (0.2 pm)

4

Resolution between 0.7 and 1 Angstrom can be achieved

through AFM technology -although even greater resolutions
can be captured in vacuo or in liquid

Such resolution is dependent upon a variety of factors, however:

: (The mode of analysis: contact vs. non-contact etc)
- The sharpness of the tip.
- The distances between the objects to be resolved.

« The height of the two objects that are being
resolved.
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Different Tips for Different Jobs




Resolution of the AFM
The sharpness of the tip
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A schematic diagram showing the factors that affect
resolution in AFM
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resolution in AFM



Resolution of the AFM

The height of the objects to be resolved

Figure adopted from Bustamante and Revetti 1996



Fig.1. 3D AFM height image of nanoparticles sample. Raw atomic force
microscope data is visualized as 3D surface.

AFM data courtesy Dr. Kannan Raghuraman, University of Missouri-
Columbia.


http://som.missouri.edu/RSI/Faculty/Kannan.htm

Biological Applications

Countless biological processes - DNA replication, protein synthesis,
drug interaction (to name but a few)- are governed by
intermolecular forces in the nano newton range that can be
detected by the AFM and used to:

Study of the structure and function of membrane proteins.
Study of DNA-Protein interactions.

Image and analysis of Protein “overt” functions reactions as
they proceed in “real time”.

Cell structures

Other applications....
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450nm

Growing tips of dorsal root ganglion neurites. The three-dimensional shape of the growing tip of a single neurite is shown in A-C, images acquired
approximately 5 minutes apart.While the rapid extension and retraction of cytoplasm extending horizontal to the plane of the substrate has been
revealed by other imaging techniques in living cells, the relatively high ridges and more singular spines (depicted by arrow in B, but not in A & C)
which dynamically reshape themselves on the order of minutes have not. Panels D—F are three-dimensional reconstructions of additional sympathetic
(D) and DRG (E, F) growth cones.Vertical projections as well as horizontal spines are present in each case and yet dramatically different. The scale bar
applies to X andY dimensions and the color bar applies to the Z dimension.These are shown only in the F panel, but

apply to all panels as the dimensions are very similar.

McNally and Borgens, 2004, Journal of Neurocytology 33,251-258






Data Zoom 4.0 nm

| Data Zoom |

|
0.0 1: Height 1.0 pm

1: Height

Two different kinds of plasmid scanned in air.

The first one is 954 nm total in length.
The second is pGEM3Zf(+) vector, 3,197bp; the average length being 674 nm.



DNA-Protein
interactions

“Tapping Mode” AFM image of an individual human transcription factor
2 DNA complex. Protein:protein interactions of two regulatory proteins
which facilitate the looping of the DNA, allowing two distal DNA sites to

be combined.

Image courtesy of Bustamante Lab, Institute of Molecular Biology, University of Oregon,

Eugene http://thunder.temple.edu/~lkhrizma/transfactor.htm



http://thunder.temple.edu/~lkhrizma/transfactor.htm
http://alice.uoregon.edu/~cjblab/

A high resolution (Raw data) AFM image taken by Dr. Hsiuchin Yang (GSU)
of the SecA protein from E. coli.

The protein was analyzed in solution (left panel) and bound to lipid (right
panel); These contrasting views demonstrate the two different,
environmentally-dependent forms of the protein.
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SecA with lipid
SecA ATPase is the major protein in the Sec-dependent protein translocation pathway on the cytoplasmic
membrane of Escherichia coli. With the driving force provided by ATP, secretory proteins can cross the
membrane through the channel formed by SecA.

SecA can form channel structure with lipid, either with open ring or closed ring. Purified SecA was incubated
with lipid and mounted on freshly cleaved mica. The width of the whole ring was 0.083um, the width of
single ridge was 0.020 pm, and the height of the ricige was 3.814nm.
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A high resolution AFM image of the nuclear
membrane of a Xenopus oocyte. A high density of

nuclear pore complexes can be clearly seen as the
round donut-like structures.

An AFM image, 250nm x 250nm scan, of a single
nuclear pore complex in the nuclear membrane of a
Xenopus oocyte in the cytoplasmic face. This NPC is
in the open state.

After calcium depletion using EGTA, an effective calcium
chelator, a conformational change takes place as evidenced by
the emergence of the central plug in the pore region. This
nuclear pore complex is in the closed state. Species between
20 and 40 kDal no longer enter the pore.

Lee, M.Annie; Dunn, Robert C.; Clapham, David E.; Stehno-Bittel, Lisa. Calcium regulation of nuclear
pore permeability. Cell Calcium (1998),23(2/3),91-101.



Height Image ardness Image

The AFM can measure the elasticity of materials. These synaptic vesicles are high (white) in the
center in the height image but dark in the center in the hardness image, because their centers are
harder than their edges. The vesicles are on a hard surface and are from the electric organ of
Torpedo californica, a marine ray. They are about 108nm in diameter.

Laney DE, Garcia RA, Parsons SM, Hansma HG. Biophys J. 1997 Feb;72(2 Pt 1):806-13. Changes
in the elastic properties of cholinergic synaptic vesicles as measured by atomic force microscopy.


http://www.ncbi.nlm.nih.gov/pubmed/9017205?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/9017205?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/9017205?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum

Advantages of AFM technology
AFM vs SEM

Advantages:

CAFM provides a true three-dimensional surface profile. )
(Samples viewed by AFM do not require any special treatments (such as metal/ |
_carbon coatings) that would irreversibly change or damage the sample. y
( AFM does not require vacuum environment or a conductive sample: good for b
biological samples

AFM can provide higher resolution than SEM.
CSEM can only scan dead samples.)

y,

Disadvantages:
CScanning size of AFM (150 x150 pm) is smaller than SEM)

An Incorrect choice of tip for the required resolution can lead to image
artifacts.

CScan slower (several minutes) than SEM (near real-time). )
AFM images can also be affected by hysteresis of the piezoelectric material

(Lapshin, 1995) and cross-talk between the (x,y,z) axes that may require
software enhancement and filtering.

@FM probes cannot normally measure steep walls or overhanging structures)



http://en.wikipedia.org/wiki/Hysteresis

Questions?



