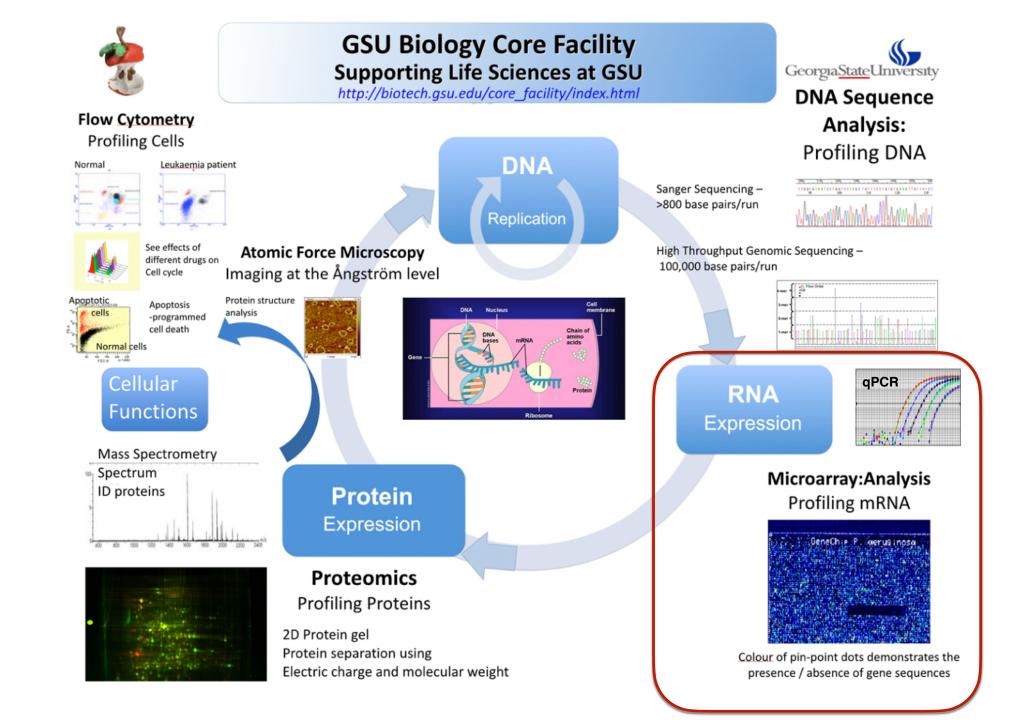
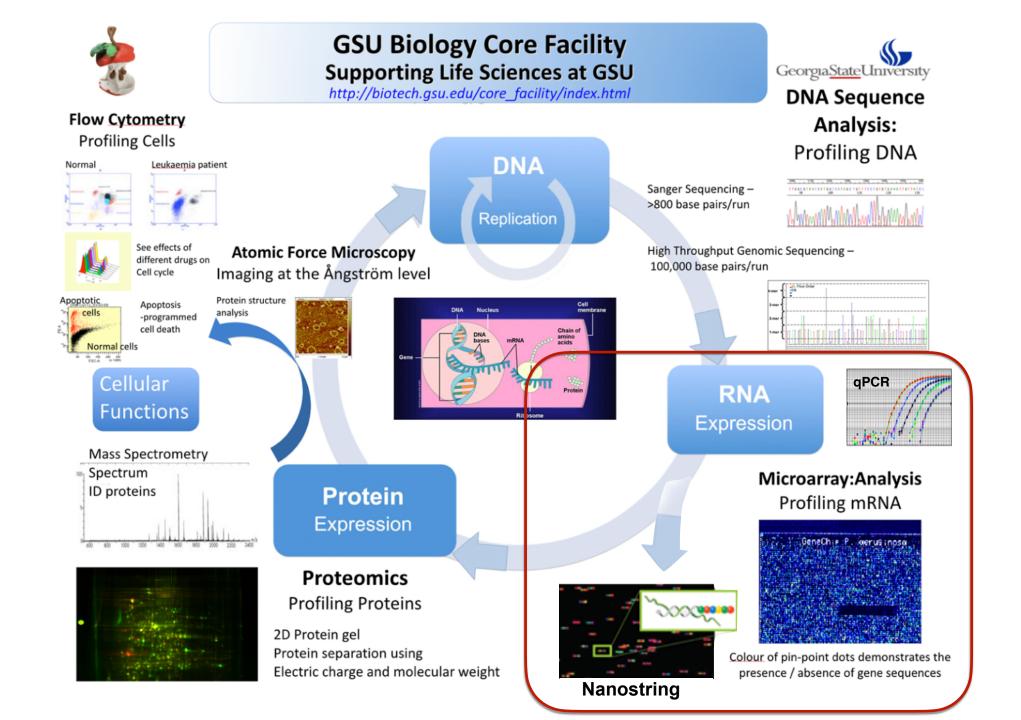

| S    | FRI                                                                       | THU                                                                                  | WED                                                                 | TUE                                                                           | MON                                                                                 | SUN     |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------|
| July | 31                                                                        | 30                                                                                   | 29                                                                  | 28                                                                            | 27                                                                                  | June 26 |
|      |                                                                           |                                                                                      |                                                                     |                                                                               | 9:00-10:00am Virtual Program<br>Orientation for Summer<br>Institute Online Modality |         |
|      | 08                                                                        | 07                                                                                   | 06                                                                  | 05                                                                            | 04                                                                                  | July 03 |
|      | 8:30-11am: BIOL4905<br>DNA PREPARATION<br>8-10:20pm: Afternoon course     | Classes begin!<br>8:30-11am: BIOL4905<br>INTRODUCTION<br>8-10:20pm: Afternoon course | Free Day                                                            | 8:30-10:00am -Welcome<br>Reception and Buddy Meet<br>& Greet Event            | Holiday (Independence Day)                                                          |         |
|      | 15                                                                        | 14                                                                                   | 13                                                                  | 12                                                                            | 11                                                                                  | 10      |
|      | Virtual<br>Independence<br>Day Activity                                   | 8:30-11am: BIOL4905<br>RNA PREPARATION<br>8-10:20pm: Afternoon course                | 8:30-11am:BIOL4905<br>PROTEOMICS III<br>8-10:20pm: Afternoon course | 8:30-11am:BIOL4905<br>PROTEOMICS II<br>8-10:20pm: Afternoon course            | 8:30-11am:BIOL4905<br>PROTEOMICS I<br>8-10:20pm: Afternoon course                   |         |
|      | 22                                                                        | 21                                                                                   | 20                                                                  | 19                                                                            | 18                                                                                  | 17      |
|      | 8:30-11am:BIOL4905<br>Next Gen. Sequencing<br>8-10:20pm: Afternoon course |                                                                                      | Midterm Break                                                       | 8:30-11am:BIOL4905<br>DNA Sequence<br>Analysis<br>8-10:20pm: Afternoon course | 8:30-11am:BIOL4905<br>qPCR / ROBOTS<br>8-10:20pm: Afternoon course                  |         |
|      | 29                                                                        | 28                                                                                   | 27                                                                  | 26                                                                            | 25                                                                                  | 24      |
|      | FINALS                                                                    | 8:30-11am:BIOL4905<br>Flow Cytometry<br>8-10:20pm: Afternoon course                  | 8:30-11am:BIOL4905<br>Automated<br>Microscopy /AFM                  | 8:30-11am:BIOL4905<br>Nanostring<br>8-10:20pm: Afternoon course               | 8:30-11am: <b>BIOL4905</b><br><b>Microarray I</b><br>8-10:20pm: Aflemoon course     |         |
|      |                                                                           |                                                                                      | 03                                                                  | 02                                                                            | August 01                                                                           | 31      |
|      |                                                                           |                                                                                      | Grades available in PAWS                                            |                                                                               | 9:00-10:00am: Closing Reception                                                     |         |





# nanoString

Direct Expression Profiling Adapted from

Jesse Gardner's PPT







 Novel chemistry invented in Leroy Hood's Lab at the Institute for Systems Biology



☆ Department of Immunology > Faculty > Affiliate Faculty > Leroy Hood, M.D., Ph.D.

#### Leroy Hood, M.D., Ph.D.

🖬 Like 0 🛛 🕑 Tweet 📮 Share

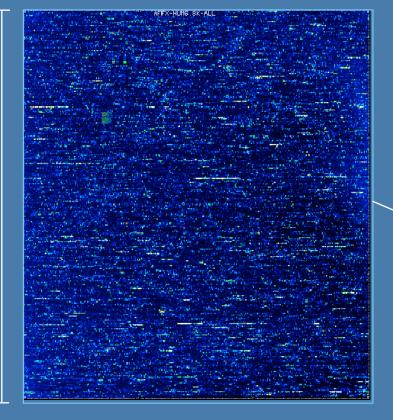


#### PRESIDENT, INSTITUTE FOR SYSTEMS BIOLOGY, AFFILIATE PROFESSOR, IMMUNOLOGY

Dr. Hood graduated from the California Institute of Technology (Caltech) with a BS in biology and received his M.D. from the Johns Hopkins Medical School. He returned to Caltech, completing his Ph.D. in 1968. Dr. Hood is President of the Institute for Systems Biology and member of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.



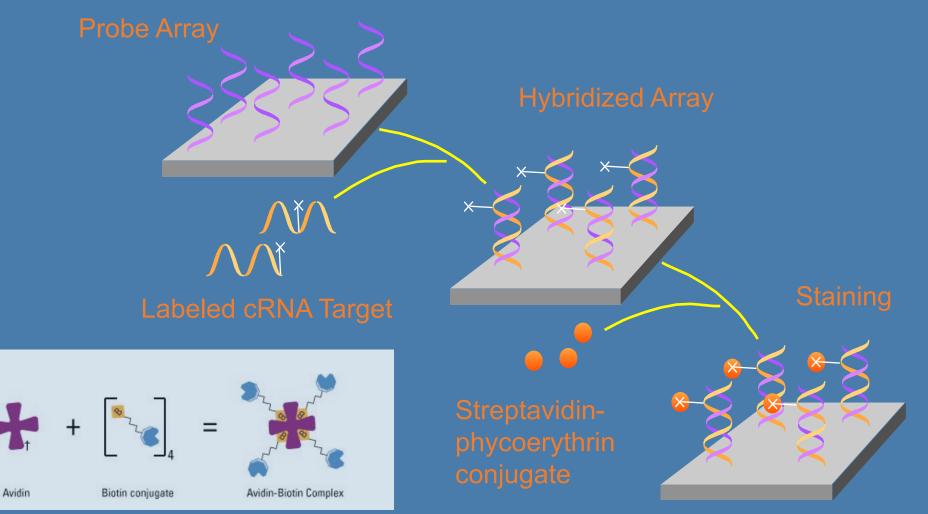
#### DR. LEE HOOD WRITES 'SECOND OPINION' COLUMNS FOR LOS ANGELES TIMES


Posted on June 20, 2021

ISB Co-founder Dr. Lee Hood is credited with coining the term "systems biology" and has been a longtime advocate of P4 medicine. Now, Hood has been selected by the Los Angeles Times to share his insights in a new weekly op-ed column, called Second Opinion.

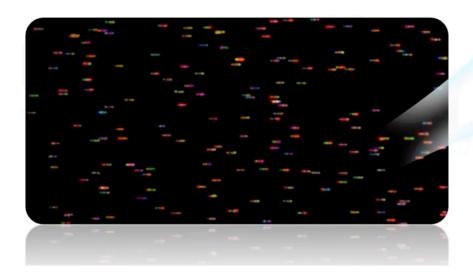
#### **GeneChip<sup>®</sup> Expression Analysis** Hybridization and Staining

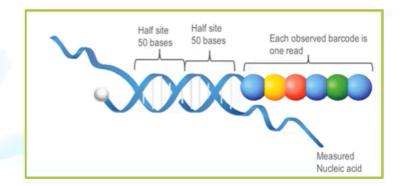



1.28cm



Potentially analyzing > 500,000 different probes complementary to genes of interest

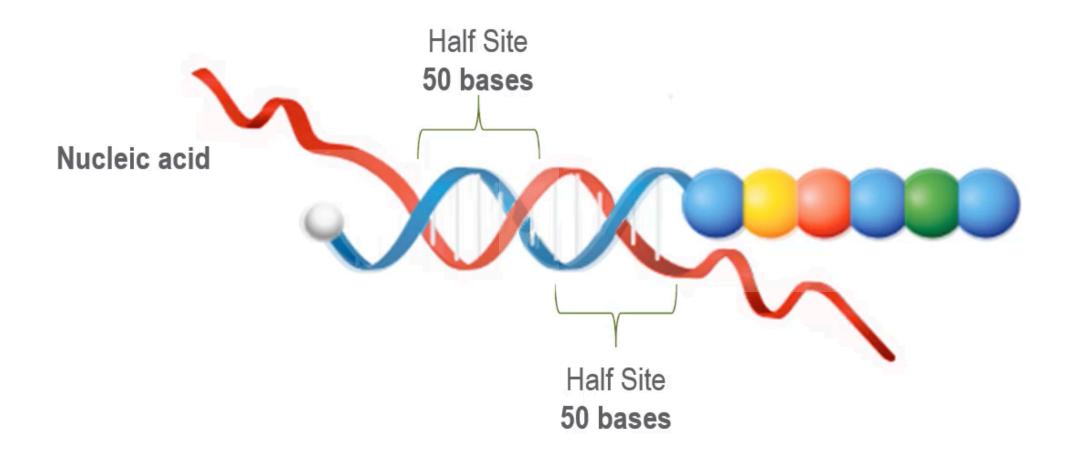

Image of Hybridized Probe Array


#### **GeneChip<sup>®</sup> Expression Analysis** Hybridization and Staining

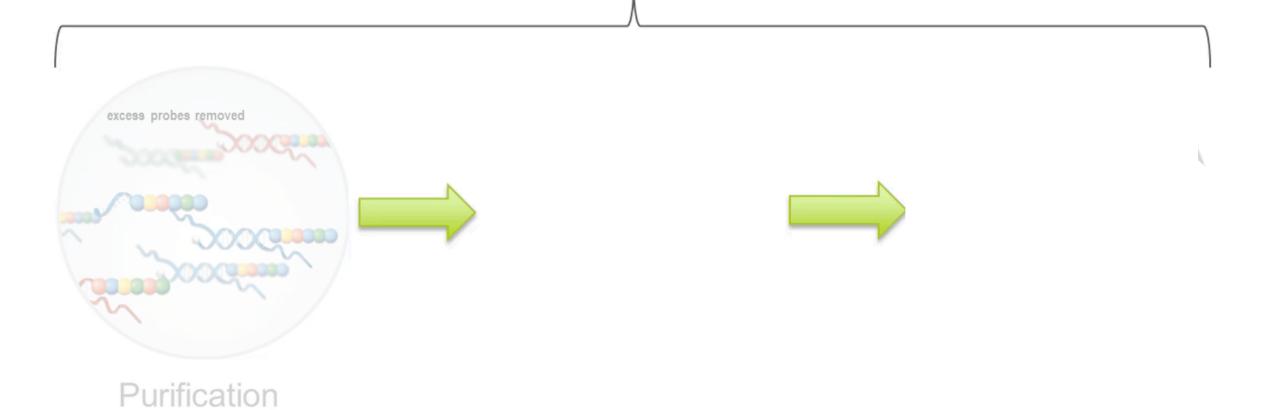



 Novel chemistry invented in Leroy Hood's Lab at the Institute for Systems Biology

#### Gene Expression is quantified by directly counting each barcode bound on the slide surface







Single-molecule, fluorescent barcodes, each attached to an individual nucleic acid molecule





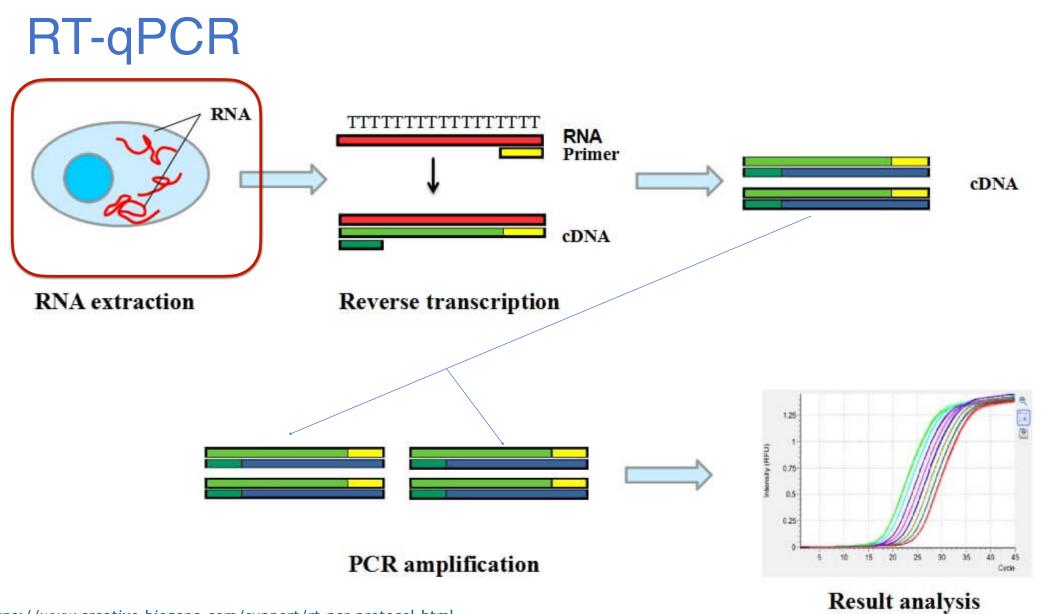


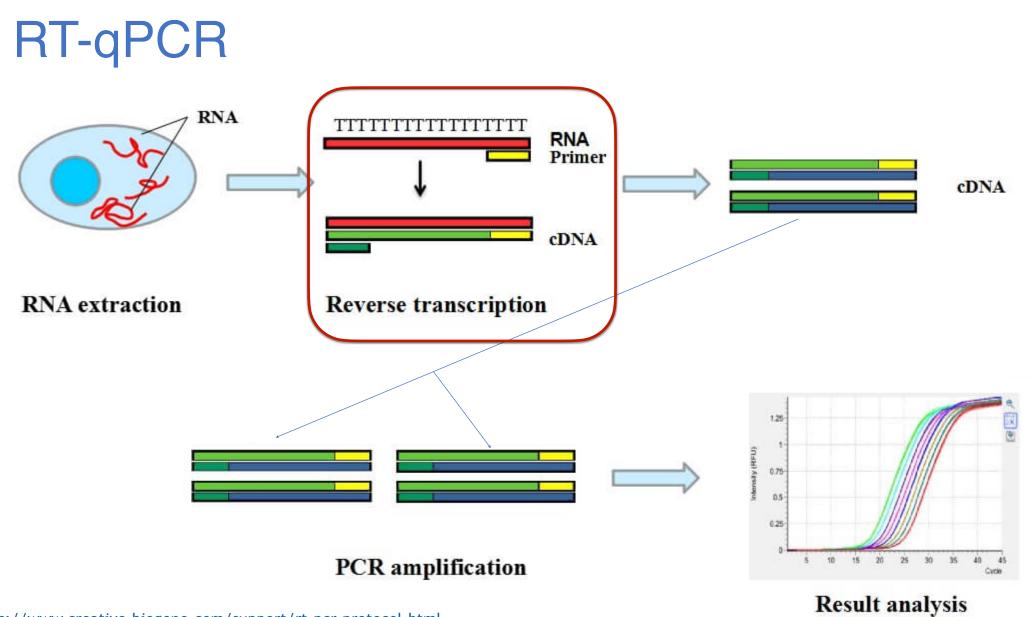
#### **Automated instrumentation**



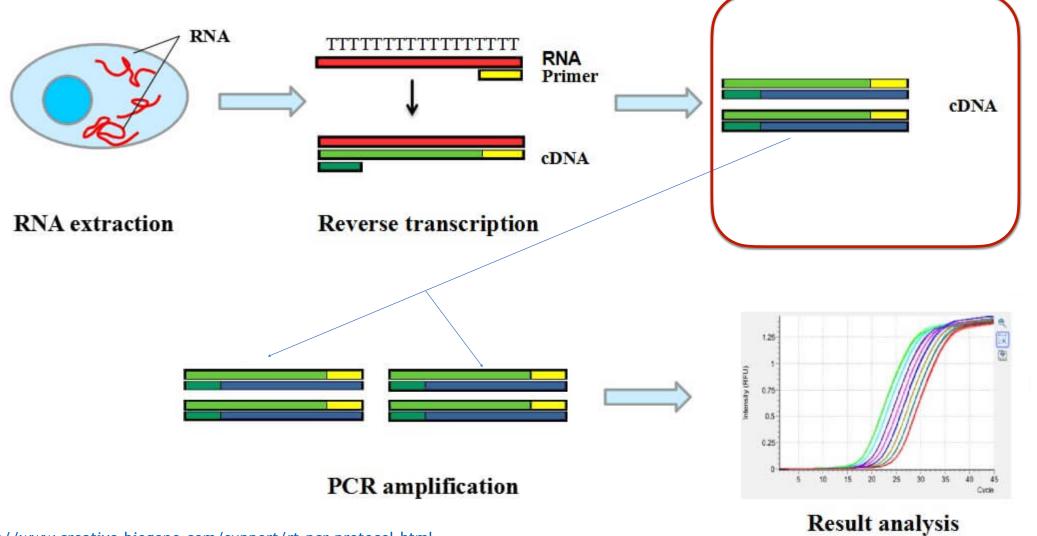
### **Alternative Methods**



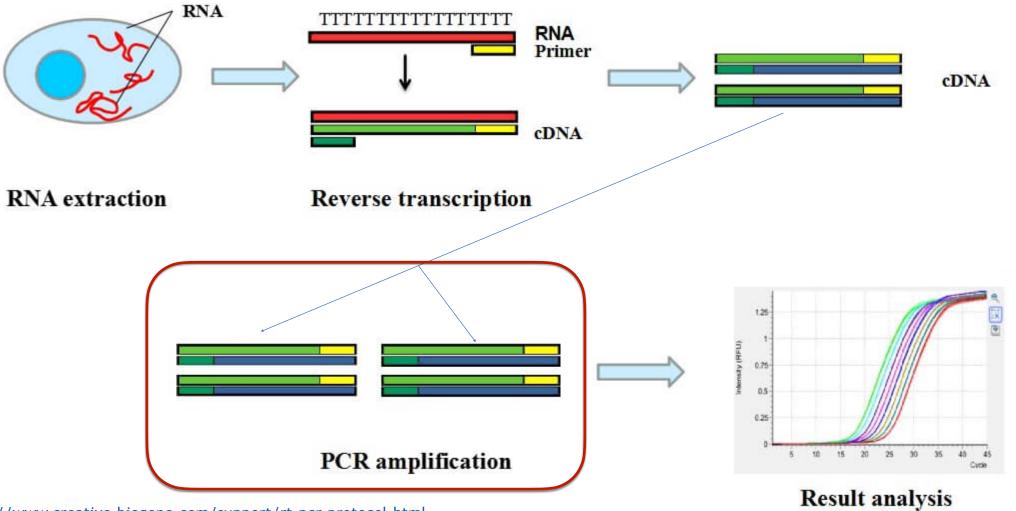

https://www.thermofisher.com/us/en/home/life-science/pcr/realtime-pcr.html


#### RT-qPCR (Polymerase)

- cDNA
- qPCR
- Pitfalls

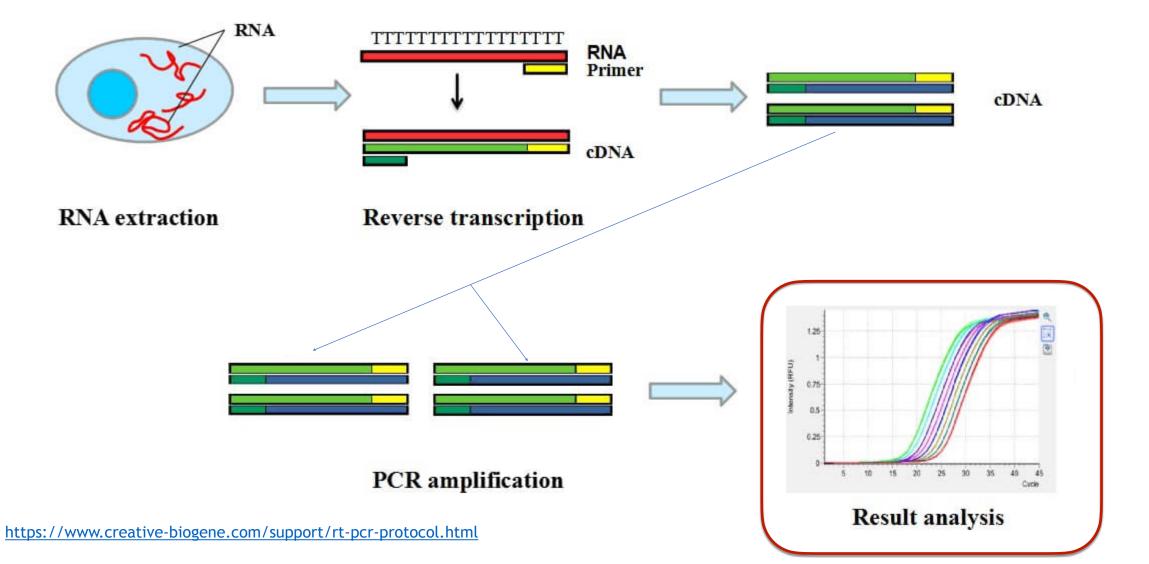

#### nanoString (no Polymerase)

- Bar-codes
- Hybridization
- Analysis

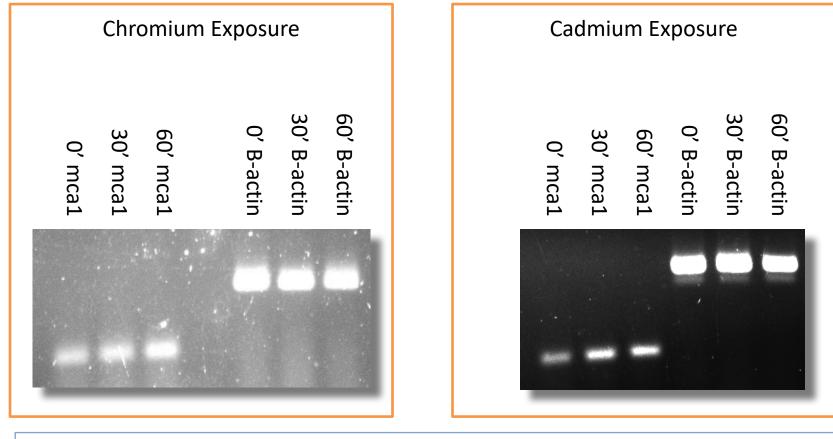





# RT-qPCR

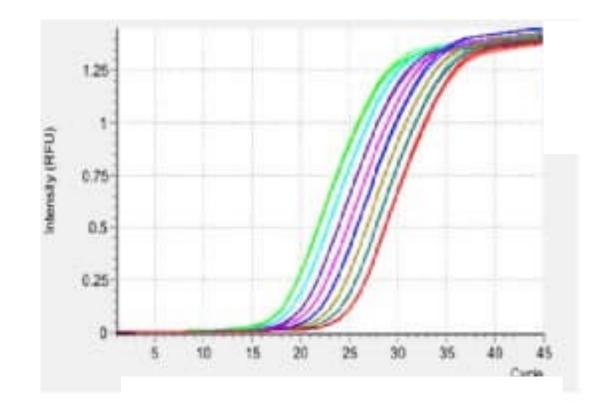



### **RT-qPCR**




https://www.creative-biogene.com/support/rt-pcr-protocol.html

### **RT-qPCR**




#### Metacaspase-1 (mca1) was induced by yeast acute exposure to the heavy metals chromium and cadmium



| Relative Quantification | 0 min | 30 min | 60 min |
|-------------------------|-------|--------|--------|
| Chromium exposure       | 1.00  | 1.34   | 1.51   |
| Cadmium exposure        | 1.00  | 1.66   | 1.56   |

Metacaspase-1 (mca1) was induced by yeast acute exposure to the heavy metals chromium and cadmium

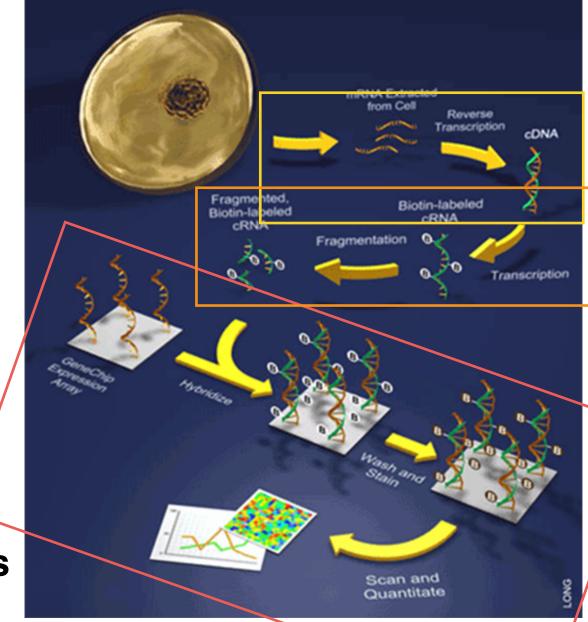


qPCR does provide for multiplex analysis

Multiple primers required to be designed for each gene under interrogation

# RT-qPCR -Potential pitfalls (difficulty in reproducibility)

#### Requires PCR


- Primer design
  - Primer annealing temperature
  - Loss of RNA due to faulty primer design
- Protocol optimization for multiple expression products
- Researcher affects data output
  - Different concentration added (template, dNTP, polymerase)
  - Affinities of primers, differences in melting temperatures, and different polymerases can affect cDNA amplification

#### Must choose appropriate normalization before PCR

- Difficult to quantitate
- Affects analysis

### Alternative Methods

#### GeneChip<sup>®</sup> Expression Analysis Hybridization and Staining



# **Microarray Potential pitfalls**

- Requires Reverse Transcription
  - Primer design
    - Primer annealing temperature
  - Protocol optimization for multiple expression products
- Requires Transcription -additional transcription to label RNA
- Chips are expensive...
  - Little to no flexibility in Chip design

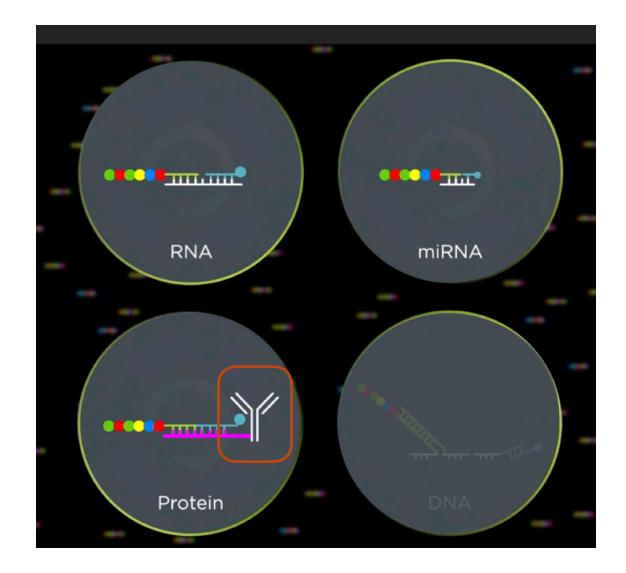
### **Alternative Methods**

#### Ion GeneStudio S5 Series I One Platform For All Your RNA Sequencing Needs



23 For Research Use Only. Not for use in diagnostic procedures.

**ThermoFisher** 

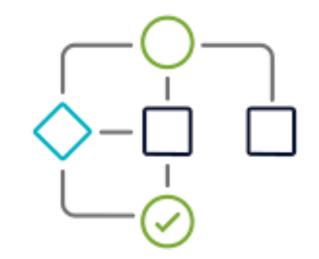

Next Generation Transcriptome Analysis

### NGS Transcriptome Analysis -Potential pitfalls

- Requires PCR -yes, but multiplex effectively rules out mutation
  - Primer design
    - Primer annealing temperature
    - Loss of RNA due to faulty primer design
    - low level RNA species might not be amplified proportionally...
- Requires Reverse Transcription
  - Primer design
    - Primer annealing temperature
  - Protocol optimization for multiple expression products
- Set-up is relatively cumbersome for few genes...
- Chips are EXPENSIVE

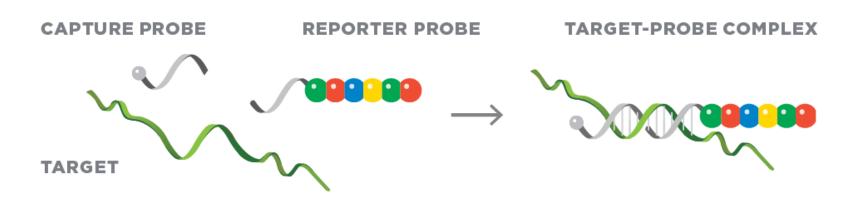


# nanoString (multi target-rich analyses)



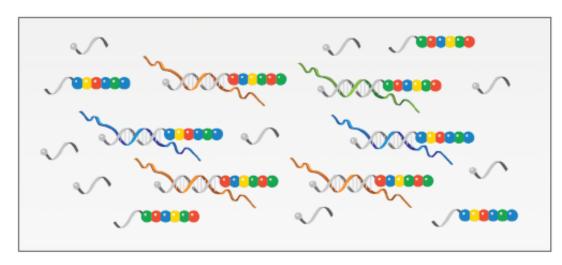

# nanoString (PCR Free Expression Assay)




#### Work Flow

- Decide target genes and order probe-set
  - Prebuilt panels
  - Custom panels
- Hybridize probes to RNA (16 hr)
- Load onto nanoString fluidics chip
  - 12 simultaneous samples
  - Magnetic bead technology
- Run Protocol (6 7 hr)
- Analyze data




### nanoString Hybridization Probe Set

- Capture and reporter probe are designed for each target gene... by Nanostring Inc.
  - Capture ~50 nt compliment to target and biotin
  - Reporter ~50 nt compliment to target and a 6-sequence color "barcode"
    - 4 colors and 6 (6<sup>4</sup> = 1,296) positions allows for 800 unique genes assayed simultaneously with appropriate controls
    - Some color combinations are unusable due to equipment sensitivity and a subset is retained for the controls

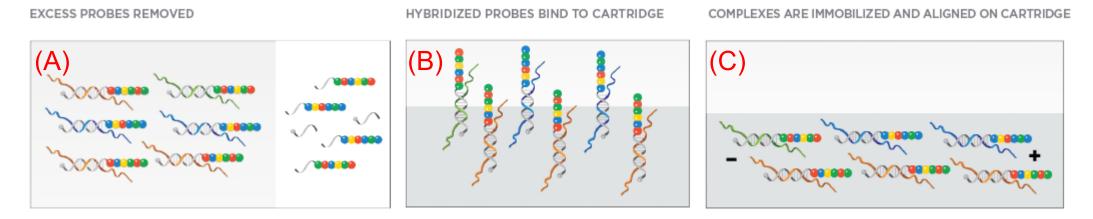


# nanoString Hybridize

#### SOLUTION PHASE HYBRIDIZATION

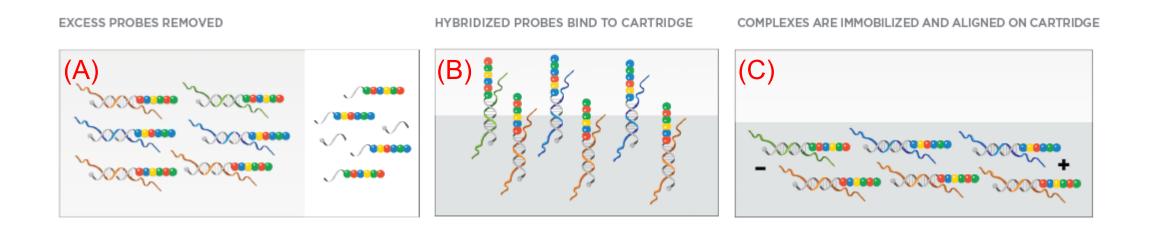


- Single-step hybridization
  - Template + Probes  $\rightarrow$  Thermocycler
- 16-hour incubation at 65°C
- High specificity
  - Separate capture and reporter probe decrease likeliness of false positives (both must bind to show up at final analysis)
- Hybridized sample will hold at 4°C for 20 hours after completion
- Also contains technical positive and negative control probes


# Load nanoString Fluidics Chip

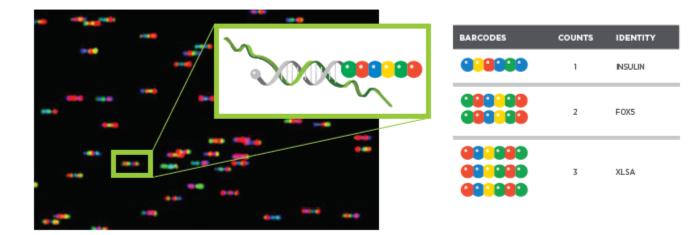
- Hybridized sample volumes are equalized to 35  $\mu L$  and loaded into separate wells
- Place protection sticker over loading ports
- Remove fluidics ports protector (green sticker)
- Place into **nCounter** and start protocol




# Running Protocol (inside the box)

- Chip contains magnetic beads containing short oligo sequences
  - One sequence compliments capture probe and the other sequence compliments reporter probe
- Sequential hybridization, washing, and melting of sample to magnetic beads allows for cleaning of unbound and non-specifically bound probes (A)




### Running Protocol (inside the box)

- After wash beads are moved into viewing area where ubiquitin tags on the capture probe bind to cartridges (B)
- Reporter oligo's are melted from bead and an electric field is applied to the sample which align the samples and allow ubiquitin tag on reporter tags to bind cartridge (C)



### Running Protocol (inside the box)

- High quality imaging allows a computer to analyze the thousands of images captured.
  - About 700 images are taken per sample
- Running time is about 8 hours.



BARCODES COUNTED

## Analyze Data

- Technical controls allow for normalization regardless of input concentration
- Built in quality control flags allow for confidence of data
- nCounter freeware provided by nanoString does hard analysis
  - Heat maps
  - Box-whisker plots
  - Fold change/significance plots
  - etc.

| 33 | 30102260481220 | 9 Mar 31, 2019 11:29 mRNA  | NS_IMMUNOLOG |  |  |  |
|----|----------------|----------------------------|--------------|--|--|--|
| 34 | 30102260481220 | 10 Mar 31, 2019 11:29 mRNA | NS_IMMUNOLOG |  |  |  |
| 35 | 30102260481220 | 11 Mar 31, 2019 11:29 mRNA | NS_IMMUNOLOG |  |  |  |
| 36 | 30102260481220 | 12 Mar 31, 2019 11:29 mRNA | NS_IMMUNOLOG |  |  |  |

| ; ] T |        |  |
|-------|--------|--|
|       | , i 14 |  |
|       |        |  |

| Gene    | Sample 1 | Sample 2 | Sample 3 |
|---------|----------|----------|----------|
| SPP1    | 8,002    | 201      | 948      |
| GAPDH   | 7,452    | 1,621    | 1,370    |
| PLA2G2A | 6,884    | 449      | 948      |
| PDCD1   | 2,751    | 915      | 632      |
| TGFBI   | 2,096    | 816      | 1,054    |
| TIMP1   | 2,034    | 473      | 948      |
| PGK1    | 1,427    | 1,420    | 632      |
| MCL1    | 1,320    | 1,374    | 421      |
| FAT1    | 1,303    | 208      | 948      |
| STAT3   | 1,270    | 1,554    | 1,054    |
| PLG     | 1,129    | 7,935    | 527      |
| XRCC5   | 1,113    | 1,854    | 1,791    |
| COL1A1  | 1,080    | 272      | 1,054    |
| ERBB2   | 1,028    | 106      | 421      |

| > |
|---|
|   |
|   |

| Gene    | Sample 1 | Sample 2 | Sample 3 |
|---------|----------|----------|----------|
| SPP1    | 8,002    | 201      | 948      |
| GAPDH   | 7,452    | 1,621    | 1,370    |
| PLA2G2A | 6,884    | 449      | 948      |
| PDCD1   | 2,751    | 915      | 632      |
| TGFBI   | 2,096    | 816      | 1,054    |
| TIMP1   | 2,034    | 473      | 948      |
| PGK1    | 1,427    | 1,420    | 632      |
| MCL1    | 1,320    | 1,374    | 421      |
| FAT1    | 1,303    | 208      | 948      |
| STAT3   | 1,270    | 1,554    | 1,054    |
| PLG     | 1,129    | 7,935    | 527      |
| XRCC5   | 1,113    | 1,854    | 1,791    |
| COL1A1  | 1,080    | 272      | 1,054    |
| ERBB2   | 1,028    | 106      | 421      |

| > |
|---|
|   |
|   |

| Gene    | Sample 1 | Sample 2 | Sample 3 |
|---------|----------|----------|----------|
| SPP1    | 8,002    | 201      | 948      |
| GAPDH   | 7,452    | 1,621    | 1,370    |
| PLA2G2A | 6,884    | 449      | 948      |
| PDCD1   | 2,751    | 915      | 632      |
| TGFBI   | 2,096    | 816      | 1,054    |
| TIMP1   | 2,034    | 473      | 948      |
| PGK1    | 1,427    | 1,420    | 632      |
| MCL1    | 1,320    | 1,374    | 421      |
| FAT1    | 1,303    | 208      | 948      |
| STAT3   | 1,270    | 1,554    | 1,054    |
| PLG     | 1,129    | 7,935    | 527      |
| XRCC5   | 1,113    | 1,854    | 1,791    |
| COL1A1  | 1,080    | 272      | 1,054    |
| ERBB2   | 1,028    | 106      | 421      |

|--|

| Gene    | Sample 1 | Sample 2 | Sample 3 |
|---------|----------|----------|----------|
| SPP1    | 8,002    | 201      | 948      |
| GAPDH   | 7,452    | 1,621    | 1,370    |
| PLA2G2A | 6,884    | 449      | 948      |
| PDCD1   | 2,751    | 915      | 632      |
| TGFBI   | 2,096    | 816      | 1,054    |
| TIMP1   | 2,034    | 473      | 948      |
| PGK1    | 1,427    | 1,420    | 632      |
| MCL1    | 1,320    | 1,374    | 421      |
| FAT1    | 1,303    | 208      | 948      |
| STAT3   | 1,270    | 1,554    | 1,054    |
| PLG     | 1,129    | 7,935    | 527      |
| XRCC5   | 1,113    | 1,854    | 1,791    |
| COL1A1  | 1,080    | 272      | 1,054    |
| ERBB2   | 1,028    | 106      | 421      |

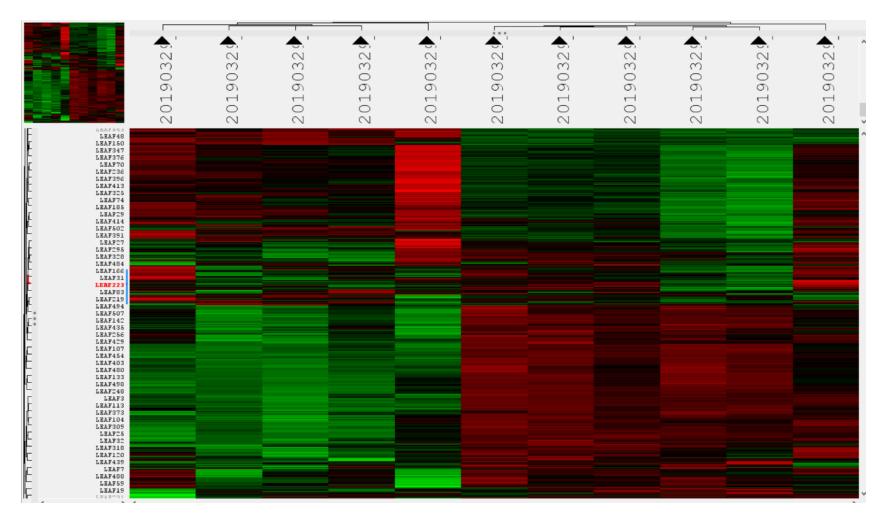
|  | ,<br>,<br>, |  |
|--|-------------|--|

| Gene    | Sample 1 | Sample 2 | Sample 3 |
|---------|----------|----------|----------|
| SPP1    | 8,002    | 201      | 948      |
| GAPDH   | 7,452    | 1,621    | 1,370    |
| PLA2G2A | 6,884    | 449      | 948      |
| PDCD1   | 2,751    | 915      | 632      |
| TGFBI   | 2,096    | 816      | 1,054    |
| TIMP1   | 2,034    | 473      | 948      |
| PGK1    | 1,427    | 1,420    | 632      |
| MCL1    | 1,320    | 1,374    | 421      |
| FAT1    | 1,303    | 208      | 948      |
| STAT3   | 1,270    | 1,554    | 1,054    |
| PLG     | 1,129    | 7,935    | 527      |
| XRCC5   | 1,113    | 1,854    | 1,791    |
| COL1A1  | 1,080    | 272      | 1,054    |
| ERBB2   | 1,028    | 106      | 421      |

| Gene    | Sample 1 | Sample 2 | Sample 3 |
|---------|----------|----------|----------|
| SPP1    | 8,002    | 201      | 948      |
| GAPDH   | 7,452    | 1,621    | 1,370    |
| PLA2G2A | 6,884    | 449      | 948      |
| PDCD1   | 2,751    | 915      | 632      |
| TGFBI   | 2,096    | 816      | 1,054    |
| TIMP1   | 2,034    | 473      | 948      |
| PGK1    | 1,427    | 1,420    | 632      |
| MCL1    | 1,320    | 1,374    | 421      |
| FAT1    | 1,303    | 208      | 948      |
| STAT3   | 1,270    | 1,554    | 1,054    |
| PLG     | 1,129    | 7,935    | 527      |
| XRCC5   | 1,113    | 1,854    | 1,791    |
| COL1A1  | 1,080    | 272      | 1,054    |
| ERBB2   | 1,028    | 106      | 421      |

| , i, | 1 |  |  |
|------|---|--|--|
|      |   |  |  |
|      |   |  |  |
|      |   |  |  |

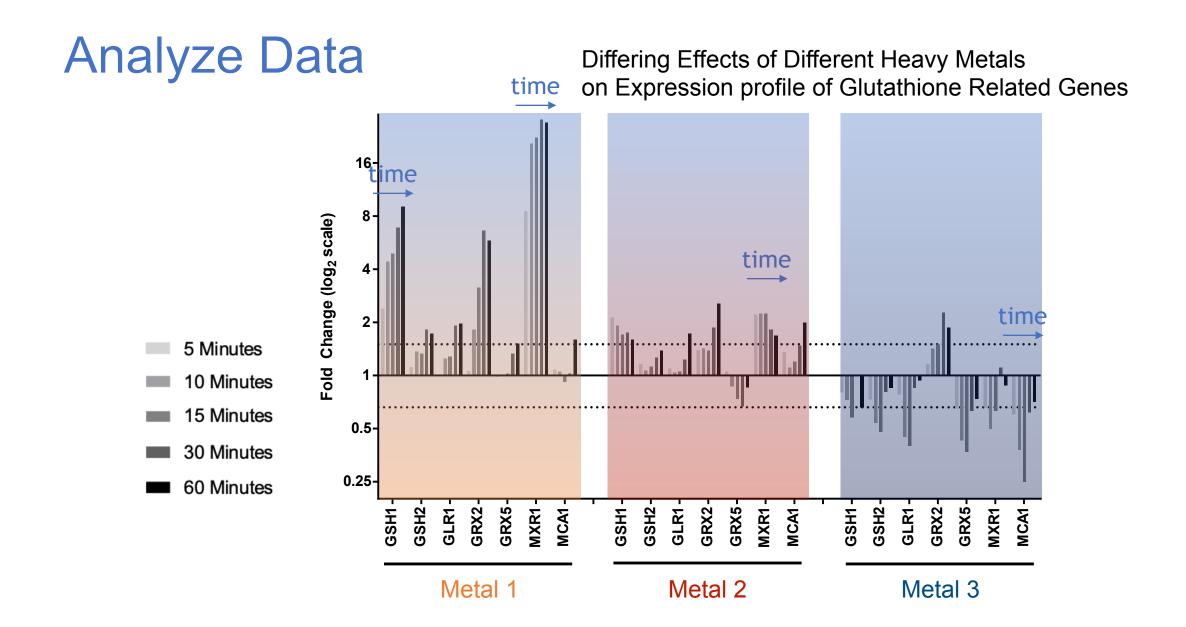
|   | Gene    | Sample 1 | Sample 2 | Sample 3 |
|---|---------|----------|----------|----------|
|   | SPP1    | 8,002    | 201      | 948      |
|   | GAPDH   | 7,452    | 1,621    | 1,370    |
|   | PLA2G2A | 6,884    | 449      | 948      |
|   | PDCD1   | 2,751    | 915      | 632      |
|   | TGFBI   | 2,096    | 816      | 1,054    |
|   | TIMP1   | 2,034    | 473      | 948      |
| 5 | PGK1    | 1,427    | 1,420    | 632      |
|   | MCL1    | 1,320    | 1,374    | 421      |
|   | FAT1    | 1,303    | 208      | 948      |
|   | STAT3   | 1,270    | 1,554    | 1,054    |
|   | PLG     | 1,129    | 7,935    | 527      |
|   | XRCC5   | 1,113    | 1,854    | 1,791    |
|   | COL1A1  | 1,080    | 272      | 1,054    |
|   | ERBB2   | 1,028    | 106      | 421      |


|  | Gene    | Sample 1 | Sample 2 | Sample 3 |
|--|---------|----------|----------|----------|
|  | SPP1    | 8,002    | 201      | 948      |
|  | GAPDH   | 7,452    | 1,621    | 1,370    |
|  | PLA2G2A | 6,884    | 449      | 948      |
|  | PDCD1   | 2,751    | 915      | 632      |
|  | TGFBI   | 2,096    | 816      | 1,054    |
|  | TIMP1   | 2,034    | 473      | 948      |
|  | PGK1    | 1,427    | 1,420    | 632      |
|  | MCL1    | 1,320    | 1,374    | 421      |
|  | FAT1    | 1,303    | 208      | 948      |
|  | STAT3   | 1,270    | 1,554    | 1,054    |
|  | PLG     | 1,129    | 7,935    | 527      |
|  | XRCC5   | 1,113    | 1,854    | 1,791    |
|  | COL1A1  | 1,080    | 272      | 1,054    |
|  | ERBB2   | 1,028    | 106      | 421      |

|  | • • |   |
|--|-----|---|
|  |     |   |
|  |     |   |
|  |     | - |

| Gene    | Sample 1 | Sample 2 | Sample 3 |
|---------|----------|----------|----------|
| SPP1    | 8,002    | 201      | 948      |
| GAPDH   | 7,452    | 1,621    | 1,370    |
| PLA2G2A | 6,884    | 449      | 948      |
| PDCD1   | 2,751    | 915      | 632      |
| TGFBI   | 2,096    | 816      | 1,054    |
| TIMP1   | 2,034    | 473      | 948      |
| PGK1    | 1,427    | 1,420    | 632      |
| MCL1    | 1,320    | 1,374    | 421      |
| FAT1    | 1,303    | 208      | 948      |
| STAT3   | 1,270    | 1,554    | 1,054    |
| PLG     | 1,129    | 7,935    | 527      |
| XRCC5   | 1,113    | 1,854    | 1,791    |
| COL1A1  | 1,080    | 272      | 1,054    |
| ERBB2   | 1,028    | 106      | 421      |

# Analyze Data


#### Increased Expression



• Sample heatmap of mouse immunology assay.

 Mice were treated with an ocular herpes virus and whole eye expression was analyzed

#### **Decreased Expression**



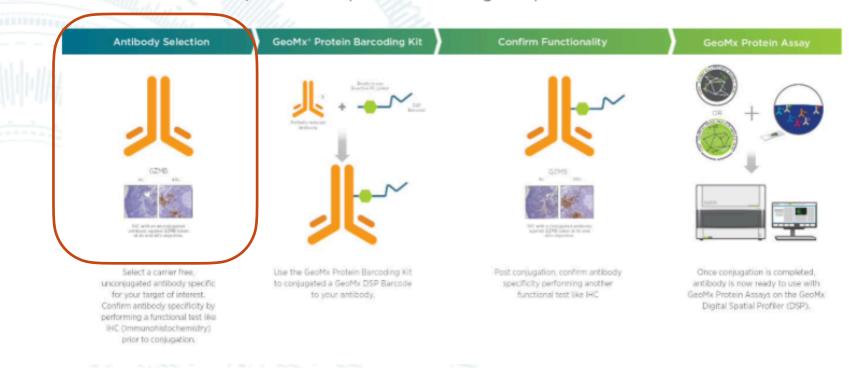
# Strengths of nanoString

### No PCR

- Reduces work time
- Reduces sources of error
- Built in QC
  - Removes need for technical repeats/researcher artifacts in data
  - Allows for high confidence in data
  - Provides route for analysis of very low transcribed or completely untranscribed products under treatment conditions

# Strengths of nanoString

### No PCR

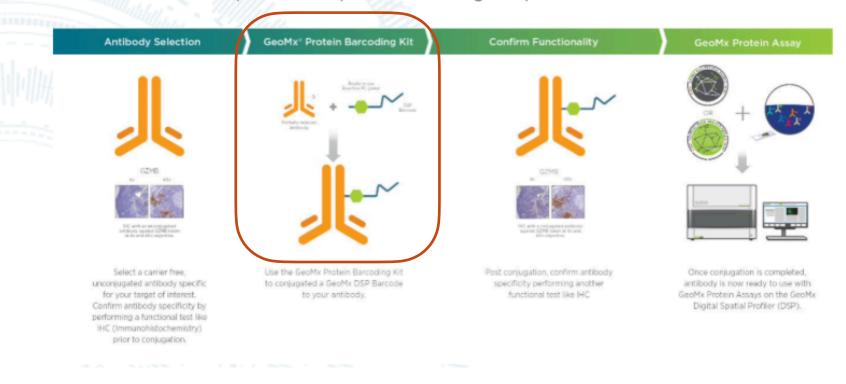

- Reduces work time
- Reduces sources of error
- Built in QC
  - Removes need for technical repeats/researcher artifacts in data
  - Allows for high confidence in data
  - Provides route for analysis of very low transcribed or completely untranscribed products under treatment conditions

## nanoString (Future purchase?)

#### **PROTEIN BARCODING**

#### PRODUCT SPECIFICATIONS

The Custom Protein Workflow enables researchers to barcode antibodies of interest for use with the GeoMx DSP. Antibodies are barcoded with either the Protein Barcoding Service or with the Protein Barcoding Kit. After barcoding, antibodies are ready to be utilized on GeoMx DSP with GeoMx Protein Assays. With added custom antibodies alongside GeoMx Protein Assays for NGS readout, researchers can profile 150+ proteins in a single experiment.

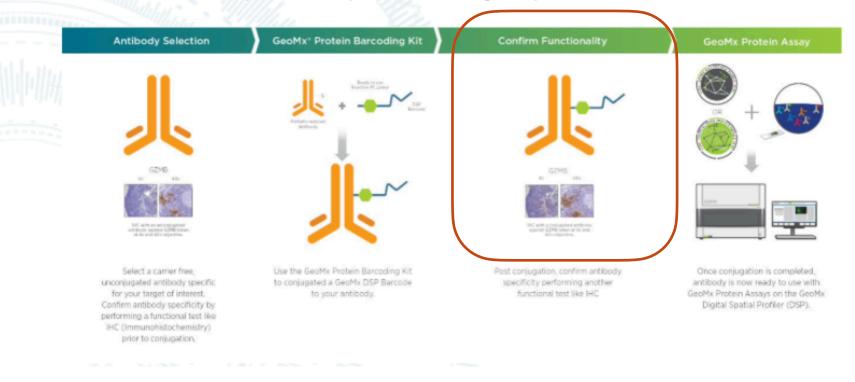



## nanoString (Future purchase?)

#### **PROTEIN BARCODING**

#### PRODUCT SPECIFICATIONS

The Custom Protein Workflow enables researchers to barcode antibodies of interest for use with the GeoMx DSP. Antibodies are barcoded with either the Protein Barcoding Service or with the Protein Barcoding Kit. After barcoding, antibodies are ready to be utilized on GeoMx DSP with GeoMx Protein Assays. With added custom antibodies alongside GeoMx Protein Assays for NGS readout, researchers can profile 150+ proteins in a single experiment.




## nanoString (Future purchase?)

#### **PROTEIN BARCODING**

#### PRODUCT SPECIFICATIONS

The Custom Protein Workflow enables researchers to barcode antibodies of interest for use with the GeoMx DSP. Antibodies are barcoded with either the Protein Barcoding Service or with the Protein Barcoding Kit. After barcoding, antibodies are ready to be utilized on GeoMx DSP with GeoMx Protein Assays. With added custom antibodies alongside GeoMx Protein Assays for NGS readout, researchers can profile 150+ proteins in a single experiment.

