BIOL2107, Fall '23

Lecture 11

Gregor Mendel

MITOSIS

Parent cell (2n)

Metaphase

Anaphase

Two daughter cells (each $2 n$)

Mitosis is a mechanism for constancy: The parent nucleus produces two identical daughter nuclei.

MEIOSIS

Telophase I

Metaphase II

chromosome pairs

Anaphase I

Four daughter cells (each n)

(11) n

Meiosis is a mechanism for diversity: The parent nucleus produces four different haploid daughter nuclei.

Parent cell

MEIOSIS

Figure 11.12
Biology: How Life Works, Second Edition

TABLE 11.1 Comparison of Mitosis and Meiosis.

	MITOSIS	MEIOSIS
Function	Asexual reproduction in unicellular eukaryotes	Sexual reproduction
	Development in multicellular eukaryotes	Production of gametes and spores
	Tissue regeneration and repair in multicellular eukaryotes	
Organisms	All eukaryotes	Most eukaryotes
Number of rounds of DNA synthesis	1	1
Number of cell divisions	1	2
Number of daughter cells	2	4
Chromosome complement of daughter cell compared with parent cell	Same	Half
Pairing of homologous chromosomes	No	Meiosis I-Yes
		Meiosis II-No
Crossing over	No	Meiosis I-Yes
		Meiosis II-No
Separation of homologous chromosomes	No	Meiosis I-Yes
		Meiosis II-No
Centromere splitting	Yes	Meiosis I-No
		Meiosis II-Yes
Separation of sister chromatids	Yes	Meiosis I-No
		Meiosis II-Yes

8

6
8
8
8
8
8
8
8
8
8
88
88
20
38
15
sis
21
8
16
$4=$
22

88	9
17	18
8	
8	
8	
8	

Sutton \& Boveri 1900's

Gregor Mendel

From Wikipedia, the free encyclopedia
Gregor Johann Mendel (Czech: Řehor̆ Jan Mendel; ${ }^{[1]} 20$ July $1822^{[2]}-6$ January 1884) (English:/mendal/) was a scientist, Augustinian friar and abbot of St. Thomas' Abbey in Brno, Margraviate of Moravia. Mendel was born in a German-speaking family ${ }^{[3]}$ in the Silesian part of the Austrian Empire (today's Czech Republic) and gained posthumous recognition as the founder of the modern science of genetics. Though farmers had known for millennia that crossbreeding of animals and plants could favor certain desirable traits, Mendel's pea plant experiments conducted between 1856 and 1863 established many of the rules of heredity, now referred to as the laws of Mendelian inheritance.[4]

Mendel worked with seven characteristics of pea plants: plant height, pod shape and color, seed shape and color, and flower position and color. Taking seed color as an example, Mendel showed that when a true-breeding yellow pea and a true-breeding green pea were cross-bred their offspring always produced yellow seeds. However, in the next generation, the green peas reappeared at a ratio of 1 green to 3 yellow. To explain this phenomenon, Mendel coined the terms "recessive" and "dominant" in reference to certain traits. (In the preceding example, the green trait, which seems to have vanished in the first filial generation, is recessive and the yellow is dominant.) He published his work in 1866, demonstrating the actions of invisible "factors"-now called genes-in predictably determining the traits of an organism.

The profound significance of Mendel's work was not recognized until the turn of the 20th century (more than three decades later) with the rediscovery of his laws. ${ }^{[5]}$ Erich von Tschermak, Hugo de Vries, Carl Correns and William Jasper Spillman independently verified several of Mendel's experimental findings, ushering in the modern age of genetics.[4]

Contents [hide]

1 Life and career
2 Contributions
2.1 Experiments on plant hybridization 2.1.1 Initial reception of Mendel's work
2.2 Other experiments

3 Rediscovery of Mendel's work
4 The Mendelian Paradox
5 See also
6 References
7 Bibliography
8 Further reading
9 External links

Life and career

Mendel was born into a German-speaking family in Hynčice (Heinzendorf bei Odrau in German), at the Moravian-Silesian border, Austrian Empire (now a part of the Czech Republic). ${ }^{[3]}$ He was the son of Anton and Rosine (Schwirtlich) Mendel and had one older sister, Veronika,

Rare

Black

Common

Blending Inheritance

White

Gray

Born

Johann Mendel 20 July 1822

Pea Plant Crossing

In crossing peas, the anthers of the female parent are first exposed and then cut off to prevent selffertilization.

Pea Plant Crossing

Pea Plant Crossing

> Mature pollen is collected from another flower and deposited on the stigma of the female parent.

Pea Plant Crossing

> Mature pollen is collected from another flower and deposited on the stigma of the female parent.

a. Color of seeds (yellow or green)
b. Shape of seeds (round or wrinkled)
c. Color of pod (green or yellow)
d. Shape of pod (smooth or indented)
e. Color of flower (purple or white)

f. Position of flowers (along stem or at tip)

g. Plant height (tall or dwarfed)

a. Color of seeds

 (yellow or green)b. Shape of seeds (round or wrinkled)
c. Color of pod (green or yellow)
d. Shape of pod (smooth or indented)
e. Color of flower (purple or white)

f. Position of flowers (along stem or at tip)

g. Plant height (tall or dwarfed)

Dominant

a. Color of seeds
(yellow or green)
b. Shape of seeds (round or wrinkled)

Color of pod (green or yellow)
d. Shape of pod (smooth or indented)
e. Color of flower (purple or white)

f. Position of flowers (along stem or at tip)

g. Plant height (tall or dwarfed)

(C) R. W' Van Norman/Visuals Unlimited

Gregor Mendel's hypotheses:

1. Hereditary determinants are of a particulate nature. Each genetic trait is governed by unit factors , which "hang around" in pairs (or gene pairs) within individual organisms.
2. When two different unit factors governing the same phenotypical trait occur in the same organism, one of the factors is dominant over the other one, which is called the recessive trait.
3. During the formation of gametes the "paired" unit factors separate or segregate randomly so that each gamete receives either one or the other of the two traits, but only one.
4. The union of one gamete from each parent to form a resultant zygote is random with respect to that particular characteristic.
5. During production of gametes, only one of the "pair members" for a given character passes to the gamete.
6. When fertilization occurs, the zygote gets one from each parent, thus restoring the pair.

(c) R. W. Van Norman/Visuals Unlimited

Monohybrid Cross

Monohybrid Cross

Homozygous DOMINANT

Heterozygous

Homozygous recessive

YY

Homozygous DOMINANT

Homozygous recessive

P_{1} generation

Testcross

Heterozygous \& Homozygous recessive genotypes 1:1.

Gametes from homozygous recessive parent
yy

ALL Heterozygous genotypes

Mendel's 1st law- the law of segregation

Mendel's First Law: Two members of a gene pair segregate from each other into the gametes, whereby one half of the gametes carries one of the traits, the other half carries the other.

Mendel's 2nd law- the law of random/independent assortment

Mendel's Second Law: During gamete formation the segregation of one gene pair is independent of all other gene pairs

Parental (P)

F_{2} generation

Monohybrid Cross

Parental (\mathbf{P}) generation
 X 答

F_{1} generation

F_{2} generation
F1 Plant 1

Parental (\mathbf{P}) generation

F_{1} generation
(5y)

(sy)

Independent

Independent Assortment

There are 9 possible genotypes and 4 possible phenotypes. The ratio of phenotypes is 9:3:3:1.

	RYS							
RYS	$\underset{\text { RRYYSS }}{ }$	$\underset{\text { RRYYSs }}{ } 0$		RRYyS^{2}	$\underset{\text { RrYYss }}{0}$	RrYYSs	RrYyss	RrYySs
RYs	$\underset{\text { RRYYS }}{ } \mathrm{O}$	$\begin{array}{l\|l\|} \hline 200 & 0 \\ \text { RRYYss } \end{array}$	RRYycSS	$\begin{aligned} & \text { Reo } 0 \\ & \text { RRYyss } \end{aligned}$	${\underset{R r Y Y s}{ }}$	$\begin{array}{\|l\|} \hline 0000 \\ \text { RrYYss } \\ \hline \end{array}$	$\varlimsup_{\text {RrYySs }} 0$	$\begin{aligned} & 0000 \\ & \text { RrYyss } \end{aligned}$
RyS	$\widetilde{R R Y S S}^{0}$	${\underset{R R Y Y S ~}{ }}$	$\underbrace{}_{\text {Reyyss }} 0$	$\underset{\text { RRyySs }}{ } 0$	$\underset{\text { RrYyss }}{\sim}$	${\underset{\text { RrYyss }}{ } 0}$	$\underbrace{}_{\text {Rryyss }} 0$	${\underset{\text { Rryyss }}{ } 0}^{0}$
ys	$\underset{R R Y y S}{ }$	$\begin{aligned} & \text { noc O } \\ & \text { RRYyss } \\ & \hline \end{aligned}$	${\underset{\text { RRyySs }}{ } 0}^{0}$	$\begin{aligned} & n 000 \\ & \text { RRyyss } \end{aligned}$	$\underset{\text { RrYySs }}{\sim}$	$\begin{aligned} & 0000 \\ & \text { RrYyss } \end{aligned}$		
S	$\underset{\text { RYYYSS }}{ }$	$\underset{\text { RrYYSs }}{ } 0$	$\underbrace{}_{\text {RrYyss }} 0$	RrYyss^{2}	rrYYss	$\underset{\text { rrYYs }}{00}$	rryyss	$\underbrace{0}_{\text {rrYyss }}$
S	RrYYSs	$\begin{aligned} & n 0000 \\ & \text { RrYYss } \end{aligned}$	RrYySs	$\begin{aligned} & n 000 \\ & \text { Rryyss } \end{aligned}$	rrYYss	$\begin{aligned} & \text { noo ○ } \\ & \text { rrYYss } \end{aligned}$	$\underbrace{}_{\text {rryys }} 0$	$\begin{aligned} & n 00 \bigcirc \\ & \text { myyss } \end{aligned}$
S	$\underset{\text { RrYYs }}{0}$	$\bigodot_{\text {RrYyss }}^{0}$	RryySS	RryySs		$\bigodot_{\text {rryyss }}^{0}$		$\underset{\text { rryyss }}{\infty}$
rys	RrYySs	$\begin{aligned} & \text { noc O } \\ & \text { RrYyss } \end{aligned}$	RryySs	$\begin{aligned} & n 000 \\ & \text { Rryyss } \end{aligned}$	rrYySs	$\begin{array}{\|l\|} \hline-000 \\ \text { rrYyss } \end{array}$	rryySs	$\begin{aligned} & \text { rryyss } \end{aligned}$

Phenotypic ratio:
27: round, yellow, smooth pod
9: round, yellow, constricted pod
9: round, green, smooth pod
3: round, green, constricted pod
Trihybrid Cross
9: wrinkled, yellow, smooth pod
3: wrinkled, yellow, constricted pod
3: wrinkled, green, smooth pod
1: wrinkled, green, constricted pod

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Resulting gametes

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Resulting gametes

Independent Assortment

Independent assortment of genes in different chromosomes reflects the fact that non homologous chromosomes can orient in either of two ways that are equally likely.

Resulting gametes

a. Color of seeds (yellow or green)
b. Shape of seeds (round or wrinkled)
c. Color of pod (green or yellow)
d. Shape of pod (smooth or indented)
e. Color of flower (purple or white)

f. Position of flowers (along stem or at tip)

g. Plant height
(tall or dwarfed)

a. Color of seeds (yellow or green)
b. Shape of seeds (round or wrinkled)
c. Color of pod (green or yellow)
d. Shape of pod (smooth or indented)
e. Color of flower (purple or white)

f. Position of flowers (along stem or at tip)

g. Plant height (tall or dwarfed)

chromosome 1
chromosome 7
chromosome 5
chromosome 4
chromosome 1
chromosome 4
chromosome 4

Four products of meiosis

Four products of meiosis

Four products of meiosis

Full agreement with Mendel's 2nd law

INBRED + INBRED = HYBRID

Hybrid Vigor or "heterosis"

Extensions to Mendelian Genetics

Incomplete dominance

Codominance

Multiple Alleles

Incomplete dominance

Incomplete Dominance

Amount of

Phenotype Genotype

 gene product

Extensions to Mendelian Genetics

Incomplete dominance

Codominance

Multiple Alleles

Codominance

Codominance

Camelias \& Cows

Parent with Huntington's

?

Parent with Huntington's

$\mathrm{Hh} \times \mathrm{hh}$

Parent with Huntington's

Parent with Huntington's

$\mathrm{Hh} \times \mathrm{hh}$

Parent with Huntington's

Hh xhh

$\mathrm{Hh} \times \mathrm{Hh}$

Hh x hh

$\mathrm{Hh} \times \mathrm{Hh}$

Parent with Huntington's

Phenotype

Albino

Himalayan

$c^{c h} c^{c h}$
White hair with black tips on the body

Chinchilla

Colored hairs over the entire body

Wild-type

$C^{+} C$
$\mathrm{C}^{+} \mathrm{C}^{\mathrm{ch}}$
$C^{+} C^{h}$

Wild-type

Light chinchilla

Light chinchilla with black tips

Himalayan

Figuse 4.4 Pronspypes of diterent comenonone of caides in rabbls. The aiders fom a selies, with the widitppe allele, c^{+}, dominant over all the cturer alieles and the nuli alleie, oldivinol
 ficinctilial. is partally domirant over the other, c c^{3} (immala, an

Some of the differences are:

| S.N. | Characteristics | Antigen | Antibody |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Molecule Type | Usually, proteins may also be
 polysaccharides, lipids or
 nucleic acids. | Proteins |
| $\mathbf{2}$ | Definition | These are substances that
 provoke an immune response. | These are Glycoproteins that
 are secreted by immune cells
 (plasma cells) in response to
 a foreign substance (antigen). |
| $\mathbf{3}$ | Effect | Cause disease or allergic | |
| reactions. | Protect the system by lysis of
 antigenic material. | | |
| $\mathbf{4}$ | Origin | Within the body or externally. | Within the body. |

Some of the differences are:

| S.N. | Characteristics | Antigen | Antibody |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Molecule Type | Usually, proteins may also be
 polysaccharides, lipids or
 nucleic acids. | Proteins |
| $\mathbf{2}$ | Definition | These are substances that
 provoke an immune response. | These are Glycoproteins that
 are secreted by immune cells
 (plasma cells) in response to
 a foreign substance (antigen). |
| $\mathbf{3}$ | Effect | Cause disease or allergic | |
| reactions. | Protect the system by lysis of | | |
| antigenic material. | | | |

Some of the differences are:

S.N.	Characteristics	Antigen	Antibody
$\mathbf{1}$	Molecule Type	Usually, proteins may also be polysaccharides, lipids or nucleic acids.	Proteins
$\mathbf{2}$	Definition	These are substances that provoke an immune response.	These are Glycoproteins that are secreted by immune cells (plasma cells) in response to a foreign substance (antigen).
$\mathbf{3}$	Effect	Cause disease or allergic	
reactions.	Protect the system by lysis of antigenic material.		
$\mathbf{4}$	Origin	Within the body or externally.	Within the body.

Some of the differences are:

S.N.	Characteristics	Antigen	Antibody
$\mathbf{1}$	Molecule Type	Usually, proteins may also be polysaccharides, lipids or nucleic acids.	Proteins
$\mathbf{2}$	Definition	These are substances that provoke an immune response.	These are Glycoproteins that are secreted by immune cells (plasma cells) in response to a foreign substance (antigen).
$\mathbf{3}$	Effect	Cause disease or allergic	
reactions.	Protect the system by lysis of antigenic material.		
$\mathbf{4}$	Origin	Within the body or externally.	Within the body.

Blood Cells

H - antigen $=$

A-antigen =
B - antigen =

An example of "co-dominant" alleles in humans

The
 ABO Blood Group System

Antigens: molecules, usually on the outside of a cell, that provoke an immune response

Genetics of the ABO System

A person with at least one A gene will produce the A protein

Type A

A person with at least one B gene will produce the B protein

A person with one A gene and one B gene will produce both proteins

A person with neither A nor B gene will not produce either protein

Type AB

Type 0

Potential Donors

Blood Type	Antibodies Produced				
A	$+40 \%$	+	-	-	+
B	大y	-	+	-	+
AB	None	+	+	+	+
0	$\text { No\% } 5$	-	-	-	+

RECIPIENT

	 Antibodies	O anti-A anti-B	\mathbf{A} anti-B	\mathbf{B} anti-A
D \mathbf{O} \mathbf{N} \mathbf{O} \mathbf{R}	\mathbf{O}	None	None	None
\mathbf{A}	Clump	None	Clump	None
	B	Clump	Clump	None
	None			
AB	Clump	Clump	Clump	None

Blood Cells

H - antigen $=$

A-antigen =
B - antigen =

An example of "co-dominant" alleles in humans

The
 ABO Blood Group System

Antigens: molecules, usually on the outside of a cell, that provoke an immune response

Genetics of the ABO System

A person with at least one A gene will produce the A protein

Type A

A person with at least one B gene will produce the B protein

A person with one A gene and one B gene will produce both proteins

A person with neither A nor B gene will not produce either protein

Type AB

Type 0

Potential Donors

Blood Type	Antibodies Produced				
A	$+40 \%$	+	-	-	+
B	大y	-	+	-	+
AB	None	+	+	+	+
0	$\text { No\% } 5$	-	-	-	+

RECIPIENT

	 Antibodies	O anti-A anti-B	\mathbf{A} anti-B	\mathbf{B} anti-A
D \mathbf{O} \mathbf{N} \mathbf{O} \mathbf{R}	\mathbf{O}	None	None	None
\mathbf{A}	Clump	None	Clump	None
	B	Clump	Clump	None
	None			
AB	Clump	Clump	Clump	None

(A) Black labrador (B_E_)

(B) Chocolate labrador (bbE_)

(C) Yellow labrador (_ _ee)

Some of the differences are:

| S.N. | Characteristics | Antigen | Antibody |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Molecule Type | Usually, proteins may also be
 polysaccharides, lipids or
 nucleic acids. | Proteins |
| $\mathbf{2}$ | Definition | These are substances that
 provoke an immune response. | These are Glycoproteins that
 are secreted by immune cells
 (plasma cells) in response to
 a foreign substance (antigen). |
| $\mathbf{3}$ | Effect | Cause disease or allergic | |
| reactions. | Protect the system by lysis of
 antigenic material. | | |
| $\mathbf{4}$ | Origin | Within the body or externally. | Within the body. |

Some of the differences are:

| S.N. | Characteristics | Antigen | Antibody |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Molecule Type | Usually, proteins may also be
 polysaccharides, lipids or
 nucleic acids. | Proteins |
| $\mathbf{2}$ | Definition | These are substances that
 provoke an immune response. | These are Glycoproteins that
 are secreted by immune cells
 (plasma cells) in response to
 a foreign substance (antigen). |
| $\mathbf{3}$ | Effect | Cause disease or allergic | |
| reactions. | Protect the system by lysis of | | |
| antigenic material. | | | |

Some of the differences are:

S.N.	Characteristics	Antigen	Antibody
$\mathbf{1}$	Molecule Type	Usually, proteins may also be polysaccharides, lipids or nucleic acids.	Proteins
$\mathbf{2}$	Definition	These are substances that provoke an immune response.	These are Glycoproteins that are secreted by immune cells (plasma cells) in response to a foreign substance (antigen).
$\mathbf{3}$	Effect	Cause disease or allergic	
reactions.	Protect the system by lysis of antigenic material.		
$\mathbf{4}$	Origin	Within the body or externally.	Within the body.

Some of the differences are:

S.N.	Characteristics	Antigen	Antibody
$\mathbf{1}$	Molecule Type	Usually, proteins may also be polysaccharides, lipids or nucleic acids.	Proteins
$\mathbf{2}$	Definition	These are substances that provoke an immune response.	These are Glycoproteins that are secreted by immune cells (plasma cells) in response to a foreign substance (antigen).
$\mathbf{3}$	Effect	Cause disease or allergic	
reactions.	Protect the system by lysis of antigenic material.		
$\mathbf{4}$	Origin	Within the body or externally.	Within the body.

Blood Cells

H - antigen $=$

A-antigen =
B - antigen =

An example of "co-dominant" alleles in humans

The
 ABO Blood Group System

Antigens: molecules, usually on the outside of a cell, that provoke an immune response

Genetics of the ABO System

A person with at least one A gene will produce the A protein

Type A

A person with at least one B gene will produce the B protein

A person with one A gene and one B gene will produce both proteins

A person with neither A nor B gene will not produce either protein

Type AB

Type 0

Potential Donors

Blood Type	Antibodies Produced				
A	$+40 \%$	+	-	-	+
B	大y	-	+	-	+
AB	None	+	+	+	+
0	$\text { No\% } 5$	-	-	-	+

RECIPIENT

	 Antibodies	O anti-A anti-B	\mathbf{A} anti-B	\mathbf{B} anti-A
D \mathbf{O} \mathbf{N} \mathbf{O} \mathbf{R}	\mathbf{O}	None	None	None
\mathbf{A}	Clump	None	Clump	None
	B	Clump	Clump	None
	None			
AB	Clump	Clump	Clump	None

Blood Cells

H - antigen $=$

A-antigen =
B - antigen =

An example of "co-dominant" alleles in humans

The
 ABO Blood Group System

Antigens: molecules, usually on the outside of a cell, that provoke an immune response

Genetics of the ABO System

A person with at least one A gene will produce the A protein

Type A

A person with at least one B gene will produce the B protein

A person with one A gene and one B gene will produce both proteins

A person with neither A nor B gene will not produce either protein

Type AB

Type 0

Potential Donors

Blood Type	Antibodies Produced				
A	$+40 \%$	+	-	-	+
B	大y	-	+	-	+
AB	None	+	+	+	+
0	$\text { No\% } 5$	-	-	-	+

RECIPIENT

	 Antibodies	O anti-A anti-B	\mathbf{A} anti-B	\mathbf{B} anti-A
D \mathbf{O} \mathbf{N} \mathbf{O} \mathbf{R}	\mathbf{O}	None	None	None
\mathbf{A}	Clump	None	Clump	None
	B	Clump	Clump	None
	None			
AB	Clump	Clump	Clump	None

Parent with Huntington's

?

Parent with Huntington's

$\mathrm{Hh} \times \mathrm{hh}$

Parent with Huntington's

Parent with Huntington's

$\mathrm{Hh} \times \mathrm{hh}$

Parent with Huntington's

Hh xhh

$\mathrm{Hh} \times \mathrm{Hh}$

Hh x hh

$\mathrm{Hh} \times \mathrm{Hh}$

Parent with Huntington's

YY

Yy

$y y$

Homozygous DOMINANT

wild type

Heterozygous

wild type

$$
c c^{+}
$$

Homozygous recessive

wild type

Phenotype

Albino

Himalayan

$c^{c h} c^{c h}$
White hair with black tips on the body

Chinchilla

Colored hairs over the entire body

Wild-type

$C^{+} C$
$\mathrm{C}^{+} \mathrm{C}^{\mathrm{ch}}$
$C^{+} C^{h}$

Wild-type

Light chinchilla

Light chinchilla with black tips

Himalayan

Figuse 4.4 Pronspypes of diterent comenonone of caides in rabbls. The aiders fom a selies, with the widitppe allele, c^{+}, dominant over all the cturer alieles and the nuli alleie, oldivinol
 ficinctilial. is partally domirant over the other, c c^{3} (immala, an

