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As the genetic material of the cell, DNA must perform four important functions:
It must be able to store all of an organism's genetic information.

It must be susceptible to mutation.

It must be precisely replicated in the cell division cycle.



1850

1900

1950

2000

1865 Genes are particulate factors
1871 Discovery of nucleic acids
1903 Chromosomes are hereditary units

1910 Genes lie on chromosomes

1913 Chromosomes are linear arrays of genes
1927 Mutations are physical changes in genes
1931 Recombination occurs by crossing over
1944 DNA is the genetic material

1945 A gene codes for protein
1951 First protein sequence
1953 DNA is a double helix

11958 DNA replicates semiconservatively

1961 Genetic code is triplet
1977 Eukaryotic genes are interrupted
1977 DNA can be sequenced

1995 Bacterial genomes sequenced

Frrl el e

2001 Human genome sequenced

A brief history of genetics.



3 potential outcomes of Heavy Nitrogen (15N) experiments.
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DNA Replication

DNA replication begins with separation of the two paired strands of double-
stranded DNA by proteins that unwind the double helix, creating a replication
fork.
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Unwinding of the
DNA duplex
resultsina
replication fork.

Replication always
occurs in the 5 to 3’
direction. The daughter
strand on top elongates
from left to right, that
on the bottom from
right to left.

Replication of the top i
strand is discontinuous
(fragmented), whereas
that of the bottom
strand is continuous.

Primers are removed
and replaced with DNA,
and the fragments of the
discontinuous (lagging)
strand are ligated where
they meet.



Newly synthesized

Template DNA

strands ’ 5’
’ t‘Fr
g’— g" RNA primer

<

5’

Unwinding
3’

Unwinding of the
DNA duplex
resultsina
replication fork.

Okazaki fragments

5’

teplication always

ccursinthe 5'to 3’

Lagging strand
Discontinuous
DNA synthesis

Primer replacement

% 3 and ligation
Leading strand /‘ 5’

Continuous 3’

DNA synthesis

Figure 12.5
Biology: How Life Works, Second Edition
© 2016 Macmillan Education

direction. The daughter
strand on top elongates
from left to right, that
on the bottom from
right to left.

Replication of the top
strand is discontinuous
(fragmented), whereas
that of the bottom

strand is continuous.

Primers are removed
and replaced with DNA,
and the fragments of the
discontinuous (lagging)
strand are ligated where
they meet.

Okazaki fragments 2,000kdpkakaoyeses)



4 5 ol
Replication starts at the

origin and moves around
Circular Origin of the circular chromosome
chromosome replication in both directions.

Replication
forks

Figure 12.10
Biology: How Life Works, Second Edition
© 2016 Macmillan Education



= _
Replication starts at the

origin and moves around
Circular Origin of the circular chromosome
chromosome replication in both directions.

Figure 12.10
Biology: How Life Works, Second Edition

) 2016 Macmillan Education



4 —
Replication starts at the

origin and moves around
the circular chromosome
in both directions.

Replication N\
forks

Figure 12.10



= _
Replication starts at the

origin and moves around
Circular Origin of the circular chromosome
chromosome replication in both directions.

Figure 12.10
Biology: How Life Works, Second Edition

) 2016 Macmillan Education



4 —
Replication starts at the

origin and moves around
the circular chromosome
in both directions.

Replication
\ forks X

Figure 12.10



Replication can begin at any origin of (Each replication bubble
replication. Eukaryotic chromosomes has two replication
have many origins of replication, whereas forks that move in
prokaryotic chromosomes have one. opposite directions.
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bubbles meet, they fuse to
make one larger bubble.
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DNA polymerase extends
an RNA primer (red).

Helicase unwinds
the DNA duplex.

The DNA polymerase complex
acts at the site of the growing
chain to increase the chain
length one DNA subunit at a
time, checking for errors
(proofreading) as it goes along.

N" r\‘MMlv

3

Topoisomerase Il relieves
the stress of unwinding.
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Proofreading in DNA Replication
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In DNA replication, each daughter strand is elongated step by step by adding

successive nucleotides to the 3’ end of the growing strand.

Biology: How Life Works © Macmillan Education

750 - 1,000 bases replicated per second
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In DNA replication, each daughter strand is elongated step by step by adding

successive nucleotides to the 3’ end of the growing strand.

Biology: How Life Works © Macmillan Education

1 errorin 1x10° (1 in 1,000,000,000) bases replicated




Proofreading in DNA Replication
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In DNA replication, each daughter strand is elongated step by step by adding
successive nucleotides to the 3’ end of the growing strand.
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In DNA replication, each daughter strand is elongated step by step by adding
successive nucleotides to the 3’ end of the growing strand.
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In DNA replication, each daughter strand is elongated step by step by adding
successive nucleotides to the 3’ end of the growing strand.
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In DNA replication, each daughter strand is elongated step by step by adding
successive nucleotides to the 3’ end of the growing strand.
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1 errorin 1x10° (1 in 1,000,000,000) bases replicated
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As the genetic material of the cell, DNA must perform four important functions:
It must be able to store all of an organism's genetic information.

It must be susceptible to mutation.

It must be precisely replicated in the cell division cycle.



At the molecular level

- gene: "a sequence of DNA that gives rise to a functional gene product...”
this product can (ultimately) be an RNA or a protein.

This is a little different from our first definition of a gene in lecture 4, when we
defined it as
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Uracil has a hydrogen (-H) where
thymine has a methyl (-CH;) group.

O

Ribose Deoxyribose



RNA is usually single-stranded.
%ﬁﬁ E & , | The sugar in RNA is ribose, not deoxyribose.

ff o  Morooen Wherever thymine is found in DNA, it is replaced
by uracil in RNA.

RNA can fold over and base-pair with itself.
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RNA comes in various forms/sequences, commensurate with function.

rRNA (81% by weight in E. coli; cellular RNA), which acts as nucleic acid scaffold for the
ribosomes, which are the enzymes that copy the mRNA message into a polypeptide chain.

tRNA (15% by weight in E. coli; 60 different possible species), which between the
code of the mRNA and the amino acids of the polypeptide. The tRNA molecules specify the
correct amino acid.
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MRNA (4% by weight in E. coli; transient 0.5-10 minute to 24hr. life span), which is the transient
information that is copied from the DNA.
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Adapted from Kelvinsong, Diagram of microRNA.
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Information in nucleic acid can be perpetuated or transferred, but the transfer of
information into a polypeptide is irreversible.
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“Universal” Genetic Code
Second letter

ccl
Q4
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~
-

> o oo lllc
A oo llais
O K089 !

Third letter

UuU|¢
uuc|,
UUA
UUG
CuuU
CUC

o | |cua

CUG

g

21 |[Auu

29 AUC

AUA

>
A

(> >]
H
Q>|

48

a8
o>

Four possibilities for the first base, multiplied by four for the second, multiplied by
four for the third yields... 64 possibilities



“Universal” Genetic Code
Second letter
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Third letter

858 I[85 Kelf] 55 K& IS

Four possibilities for the first base, multiplied by four for the second, multiplied by
four for the third yields... 64 possibilities



“Universal” Genetic Code
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Four possibilities for the first base, multiplied by four for the second, multiplied by
four for the third yields... 64 possibilities



“Universal” Genetic Code
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g UAA EJ ~
UAG ES ~

First letter
Third letter

IGA :
A
G
A
G

Four possibilities for the first base, multiplied by four for the second, multiplied by
four for the third yields... 64 possibilities



“Universal” Genetic Code

a
;
a

First letter

Four possibilities for the first base, multiplied by four for the second, multiplied by
four for the third yields... 64 possibilities



“Universal” Genetic Code
Second letter

First letter

:
:
i
:

Four possibilities for the first base, multiplied by four for the second, multiplied by
four for the third yields... 64 possibilities



The “Universal” Genetic Code is a 3 basel/letter code...

T/HER/EDC/ATG/OTT/HER/ATO/FFT/HEM /AT

TH/ERE/DCA/TGO/TTH/ERA/TOF/FTH/EMAI/T

THE/ RED / CAT / GOT / THE / RAT / OFF / THE / MAT



“Universal” Genetic Code

UAU : UGU :
UAC Tyrosine uGc | Cysteine

8).V'Y Stop codon | L[ef;Y Stop codon
[SELe) Stop codon |[UGG| Tryptophan

AUG, which codes for the amino acid methionine, is called the start codon,
which initiates the translational process.



‘“NibmdrsatiriGénébindimd8ode
Second letter

First letter

CAU
CAC
CAA
CAG
AAU
AAC
AAA
AAG

oofee
3 B

Only 20 amino acids, so the code is “redundant”
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Third letter



“Universal” Genetic Code
Second letter
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=
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> >

~
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=
—
-
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> a0 na I
| EEEEl B -

First letter
2
O

Third letter

[ >
3

=

AAU|

AAC |

| AGA
AAG| Lyst AGG
GAU [

GAC| acic

GAA

GAG RS

The genetic code is redundant but not ambiguous. This means that many amino
acids have more than one codon, but only one amino acid is specified for any one
codon.
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