Proteomic Analysis

GSU Biology Proteomics Core Facility

Hyuk Kyu Seoh

1st Dimension: Isoelectric Focusing (IEF)

pI < pH : Protein, - charge and move toward anodepI = pH: net 0 charge, no movementpI > pH: Protein, + charge and move toward cathode

1st Dimension: Isoelectric Focusing (IEF)

Immobilized pH Gradient Gel Strip

Ettan IPG Phor III

Variable *pH ranges* for IPG strips

- wide range: pH 3-10,
- Medium range: pH 4-7, pH 6-9

narrow range: 1 pH unit over 18-24 cm (0.05 pH/cm)

pH 3.5-4.5, 4-5, 4.5-5.5, 5-6, 5.5-6.7 give higher resolution, higher sample loading capacity more spots (less abundant) visible

1st Dimension: Isoelectric Focusing (IEF)

Effect of pH Ranges:

2nd Dimension: SDS-PA Gel Electrophoresis

The gel strip can then be placed at the top of a gel and the proteins within the strip electrophoresed into a 6 - 12% polyacrylamide gel containing SDS, thus effectively separating the proteins by mass.

Gel-1

Gel-2

Protein Staining Techniques

- Radioactive labeling

high sensitivity, very quantitative / linear, MS compatible

- Coomassie Brilliant Blue low sensitivity (0.1 μg detection), only somewhat quantitative, and MS compatible
- Imidazole-zinc staining: negative staining medium sensitivity (20ng), not quantitative good MS compatibility (spots not stained, only background)
- Silver staining (numerous protocols) high sensitivity (0.1ng), however, NOT quantitative, NOT Mass Spec compatible unless modified
- Fluorescent dyes
 - pre-labeling ex. CyDyes
 - post-labeling e. Sypro Ruby

sensitivity (comparable to Silver staining, 0.1 ng), very high linear range (depending on imaging system), thus very quantitative and is MS compatible

Problems relating to 2D electrophoresisi

- procedure is somewhat complex, and highly user-dependent
- unneglectable gel to gel variability:
 - IPG-strip and SDS-PAGE gel casting results in variation in spot migration
- transfer from IPG-strip to second dimension can often be cumbersome
- limited number of discernible spots VS. high abundance of spots
- not too appropriate for hydrophobic proteins: membrane proteins
- quantification problems (variations from gel to gel, and use of dyes)

.....solution ?

Single dye/staining Different samples on separated gels

•

Sample A

Sample B

Solution: Cy3 and Cy5 fluorescent dyes

Properties:

- NHS-ester, reacts with lysine
- No charge modifications
- Identical MW (reagent: 580.7 Da)
- Different fluorescent emission. => separable image acquisition
- Mass Spec: compatible

	Propyl-Cy3	Methyl-Cy5
Absorption max	553 nm	645 nm
Emission max	569 nm	664 nm

Unlu *et al.*, Electrophoresis (1997) 18:2071-77 Tonge *et al.*, Proteomics (2001) 1, 377-96 2-D differential in-gel electrophoresis $(DIGE)^1$ is a fluorescent multiplexing technology which uses matched, spectrally resolvable dyes to label protein samples prior to 2-D separation (Figure 1).

Figure 1: Outline of the 2-D DIGE technology (fluores cent dyes available with DIGE technology: Cy R 2, Cy3 and Cy5)

Single dye/stain

Cy3+Cy5 **Differential dye staining**

Example of a Screen on the Analysis Workstation Scanner

Ettan DALT II: Spot-Picker

Before and After Views of various "selected spots"