SUMMER INSTITUTE - ONLINE MODALITY CALENDAR 2022						
SUN	MON	TUE	WED	THU	FRI	SAT
June 26	27	28	29	30	31	July 02
	9:00-10:00am Virtual Program Orientation for Summer Institute Online Modality					
July 03	04	05	06	07	08	09
	Holiday (Independence Day)	8:30-10:00am -Welcome Reception and Buddy Meet & Greet Event	Free Day	Classes begin! 8:30-11am: BIOL4905 INTRODUCTION 8-10:20pm: Afternoon course	8:30-11am: BIOL4905 DNA PREPARATION 8-10:20pm: Afternoon course	
10	11	12	13	14	15	16
	8:30-11am:BIOL4905 PROTEOMICS I 8-10:20pm: Afternoon course	8:30-11am:BIOL4905 PROTEOMICS II 8-10:20pm: Afternoon course	8:30-11am:BIOL4905 PROTEOMICS III 8-10:20pm: Afternoon course	8:30-11am: BIOL4905 RNA PREPARATION 8-10:20pm: Afternoon course	Virtual Independence Day Activity	
17	18	19	20	21	22	23
	8:30-11am:BIOL4905 qPCR / ROBOTS 8-10:20pm: Afternoon course	8:30-11am:BIOL4905 DNA Sequence Analysis 8-10:20pm: Afternoon course	Midterm Break	8:30-11am:BIOL4905 Next Gen. Sequencing 8-10:20pm: Afternoon course	8:30-11am:BIOL4905 Next Gen. Sequencing 8-10:20pm: Afternoon course	
24	25	26	27	28	29	30
	8:30-11am: BIOL4905 Microarray I 8-10:20pm: Afternoon course	8:30-11am:BIOL4905 Nanostring 8-10:20pm: Afternoon course	8:30-11am:BIOL4905 Automated Microscopy /AFM	8:30-11am:BIOL4905 Flow Cytometry 8-10:20pm: Afternoon course	FINALS	
31	August 01	02	03			
Legend:	9:00-10:00am: Closing Reception		Grades available in PAWS			
Orange: Courses Blue: Activities						

Questions

Is this a good qPCR plot of data?

Explain your answer.

Questions

5' CTGCAG 3' GACGTC 5' CTGCA G 4 5' G ACGTC

Which of these Type II REN can you find in the sequence (next page). If you find the sequence, after which base number in the sequence does it cut?

Is this DNA from pGEM-T Easy?

Explain your answer.

Questions

An Overview of GeneChip[®] Technology -

John Houghton, PhD GSU ABCore Facilities

What is Microarray?

Microarrays circa 1991

(Schena et al. (1995) *Science* **270**:467-70) Probe DNA is attached to solid support plastic beads, glass slide, nylon or chip RNA is labeled (usually indirectly)

Arrays can detect mRNA microRNA Methylation SNP

High throughput 10,000s of specific probes Measure global gene expression, SNP calls, LOH, amplification, methylation etc

GeneChip® vs. Spotted Arrays

Affymetrix GeneChip[®] Arrays use oligonucleotides
 Oligos are built on a solid support

- Spotted arrays utilize nucleic acids made in solution
 - Solutions are then "spotted" onto a solid support
 - Competitive Hybridization

About Affymetrix

Historically....

DNA spotting

- DNA spotting usually uses multiple pins
- DNA in microtiter plate
- DNA usually PCR amplified
- Oligonucleotides can also be spotted

Afymetrix cornered the market

Sequence Database

Research Tools

Expression Variability

Sequence Variability

About Affymetrix

GeneChip Human Genome U133A 2.0 Array

The GeneChip® Human Genome U133A 2.0 Array is a single array representing 14,500 well-characterized human genes that can be used to explore human biology and disease processes.

Part #	Description	Unit Size	Your Price (USD)	Qty
900471	Human Genome U133A 2.0 Array	contains 2 arrays	<u>Please</u> Inquire	
900468	Human Genome U133A 2.0 Array	contains 6 arrays	<u>Please</u> Inquire	
900469	Human Genome U133A 2.0 Array	contains 30 arrays	<u>Please</u> Inquire	

Product	Technical	Required/Relat
Description	Documentation	Products

The GeneChip® Human Genome U133A 2.0 Array is a single array representing 14,500 well-characterized human genes that can be used to explore human biology and disease processes. New design and reduced feature size mean that you can use smaller sample volumes than the previous HG@U133A Array without compromising performance.

- · Provides coverage of well-substantiated genes in the transcribed human genome on a single array
- Analyzes the expression level of 18,400 transcripts and variants, including 14,500 well-characterized human genes
- Comprised of more than 22,000 probe sets and 500,000 distinct oligonucleotide features
- Use the Power of the Probe Set and get multiple independent measurements for each transcript that deliver the greatest
 accuracy and reproducibility of any microarray platform
- All probe sets represented on the GeneChip® Human Genome U133A Array are identically replicated on the GeneChip Human Genome U133A 2.0 Array

Array Profile

Sequences used in the design of the array were selected from GenBank®, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 133, April 20, 2001) and then were refined by analysis and comparison with a number of other publicly available databases including the Washington University EST trace repository and the University of California, Santa Cruz Golden-Path human genome database (April 2001 relaxes).

Instrument and Software Requirements

- GeneChip® Scanner 3000, enabled for High-Resolution Scanning*
- GeneChip® Command Console® Software (AGCC) including the GeneChip® Scanner 3000 High-Resolution Scanning
 Patch

*GeneChip Scanner 3000 High-Resolution Update is standard on all instruments shipped starting in September 2003 with serial number series 502. Previous versions, serial number series 501, will require the 00-0110 GeneChip Scanner 3000 High-Resolution Update to be installed.

901997

901996

For more information, please review the data sheet (pdf, 169 KB).

For research use only. Not for use in diagnostic procedures.

Expression Arrays 2006

Feline Gene 1.0 ST Array	30 arrays	<u>Please</u> Inquire		
Guinea Pig Gene 1.0 ST Array	Contains 6 arrays	<u>Please</u> Inquire		
Guinea Pig Gene 1.0 ST Array	Contains 30 arrays	Please Inquire		
Marmoset Gene 1.0 ST Array	6 arrays	Please Inquire	Human	
Marmoset Gene 1.0 ST Array	30 arrays	Please		
Medicago Gene 1.0 ST Array	6 arrays	Please		
Medicago Gene 1.0 ST Array	30 arrays	Please Inquire		
Ovine Gene 1.0 ST Array	6 arrays a O I	CODSIS Inquire		
Ovine Gene 1.0 ST Array	30 arrays	Picase Inquire		
Porcine Gene 1.0 ST Array	6 arrays	Please		
Porcine Gene 1.0 ST Array	901997 30 arrays	Rice (Jp) Gene 1.0 ST Array	6 arrays	OS Please hila
	901996	Rice (Jp) Gene 1.0 ST Array	30 arrays	<u>Please</u> Inquire
O ST C	901991	Rice (US) Gene 1.0 ST Array	30 arrays	Please
Rabbit Gene 1.0 ST Array	Contains 30 arrays	Please Rice (US) Gene 1.0 ST Array	6 arrays	Please
Rhesus Gene 1.0 ST Array	6 arrays	Please	6 arrays	Inquire
Rhesus Gene 1.0 ST Array	30 arrays	Please	o anays	Inquire
Rice (Cn) Gene 1.0 ST Array	902001 30 arrays	Soybean Gene 1.0 ST Array	30 arrays	<u>Please</u> Inquire
Rice (Ca) Gene 1.0 ST Array	902299	Tomato Gene 1.0 ST Array	6 arrays	<u>Please</u> Inquire
	902300	Tomato Gene 1.0 ST Array	30 arrays	Please
Rice (Jp) Gene 1.0 ST Array	6 arrays 901956	Please Zebra Finch Gene 1.0 ST Array	30 arrays	Please
Rice (Jp) Gene 1.0 ST Array	30. arrays 901957	Zebra Finch Gene 1.0 ST Array	6 arrays	Inquire Please
	902007	Zebrafish Gene 1.0 ST Array	6 arrays	Please
	902006	Zebrafish Gene 1.0 ST Array	30 arrays	Please

Enabling the Genetic Revolution

Understanding Information -Human Genome Project

Gene Functions at a Basic Level

- Gene Identification
 - Which genes are important and in which tissues?
- Pathway Characterization
 - Define relationships between genes
- Regulation

- Examine motifs on a global scale

Specific Applications in Healthcare & Pharma

• Tumour Typing

 Use expression patterns to complement classical histology to identify classes of tumors and predict disease development

Drug ResponseDrug Response

Monitor impact of a therapeutic on disease state or toxicological effect

Understanding Cancer

Distinguishing Between Leukaemias

Golub, T.R., et al. Science 286: 531-537, 1999; Armstrong, S.A., et al. Nature Genetics 30: 41- 47, 2002

Cytochrome P450, Detoxification Enzymes

Cytochrome P450 (CYP) enzymes are a superfamily of mono-oxygenases that are found in all kingdoms of life, and which show extraordinary diversity in their reaction chemistry. In mammals, these enzymes are found primarily in the membranes of the endoplasmic reticulum (microsomes) within liver cells (hepatocytes), as well as many other cell types. These enzymes use haeme iron to oxidise molecules, often making them more water-soluble for clearance.

They achieve this by either adding or unmasking a polar group. In general, the reaction catalysed by these enzymes can be summarised as:

 $R-H + O_2 + 2e^- + 2H^+ \longrightarrow$

 $R-OH + H_2O$

"Intestinal cytochrome P450 proteins play an important role in the biotransformation of drugs and may significantly limit their oral absortion."

Drug Metabolism and Disposition, June 2008 vol. 36 no. 6 1039-1045

Int J Clin Pharmacol Res. 2003;23(1):31-5.

Genetic polymorphism of cytochrome P450 enzymes in Asian populations: focus on CYP2D6. Kitada M¹.

Author information

Abstract

Published studies demonstrate that significant ethnic differences can exist in the metabolism of some drugs. These differences are caused by cytochrome P450 polymorphisms and result in the potential for wide interpatient and interethnic variability in adverse events. One of the most common of these cytochrome P450 polymorphisms is related to the CYP2D6 isozyme. Many classes of commonly used drugs are metabolized by CYP2D6, creating the potential for significant adverse events. Due to the variety of genetic polymorphisms among Asian populations, this article focuses on this group rather than on other ethnic populations and discusses the clinical importance of genetic polymorphisms with regard to potential drug interactions. Polymorphism of CYP2D6 can either increase the rate of drug elimination (ultrametabolizers, leading to faster metabolic clearance potentially resulting in reduced effectiveness and need for higher doses) or decrease drug metabolism (poor metabolizers, which may increase the potential for drug interactions and adverse events). Although the CYP2D6 poor metabolizer phenotype is less frequent in Asian than in Western populations (e.g. about 1% in Thai, Chinese and Japanese populations and up to 4.8% in Indians versus 5-10% in Caucasians), the increased prevalence of the CYP2D6*10 allele in Asians does have an impact on drugs metabolized by CYP2D6. Enzyme activity is reduced, potentially increasing circulating drug doses and increasing the risk for drug interactions. Thus, in Asian populations it may be important to optimize pharmacotherapy either by assessing patients' CYP2D6 genotype, or by prescribing medications that are not metabolized by this isozyme.

PMID: <u>14621071</u>

[PubMed - indexed for MEDLINE]

• Two mutant alleles

No enzyme activity

Intermediate Metabolizers
One reduced activity allele
One null allele

• At least one normal allele

CYP450 genes metabolize more than 90% of commercially available drugs

- Multiple functional alleles
- Excess enzymatic activity

Poor Metabolizers Two mutant alleles No enzyme activity

Intermediate Metabolizers
One reduced activity allele
One null allele

• At least one normal allele

CYP450 genes metabolize more than 90% of commercially available drugs

- Multiple functional alleles
- Excess enzymatic activity

Poor Metabolizers Two mutant alleles

No enzyme activity

Intermediate Metabolizers
One reduced activity allele

One null allele

Extensive Metabolizers

At least one normal allele

CYP450 genes metabolize more than 90% of commercially available drugs

- Multiple functional alleles
- Excess enzymatic activity

Poor Metabolizers Two mutant alleles No enzyme activity

• One • One

Intermediate Metabolizers

One reduced activity allele
One null allele

• At least one normal allele

CYP450 genes metabolize more than 90% of commercially available drugs

- Multiple functional alleles
- Excess enzymatic activity

Poor Metabolizers Two mutant alleles

No enzyme activity

Intermediate Metabolizers

One reduced activity allele
One null allele

• At least one normal allele

CYP450 genes metabolize more than 90% of commercially available drugs

- Multiple functional alleles
- Excess enzymatic activity

What is GeneChip[®] Technology?

GeneChip[®] System

GeneChip® Technology?

49 Chips per Wafer

400 Chips per Wafer

GeneChip Probe Arrays

Image of Hybridized Probe Array

GeneChip[®] Array Advantages

• Assume fixed array size, 1.28 x 1.28 cm

Feature Size	Features/Chip	Genes/Chip	
100 <i>µ</i> m	16,384	409	
50 µm	65,538	1,638	
24 µm	284,444	7,111	
20 µm	409,600	12,800	
18 µm	506,944	~ 22,500	
10 µm	1,600,000	>200,000	

GeneChip[®] Expression Analysis Hybridization and Staining

GeneChip[®] Expression Analysis Hybridization and Staining

Actual strand = 25 base pairs

Sample RNA fragments (purple) washed over DNA probe array (green)

Sample RNA fragments (purple) hybridized to DNA probe array (green)

Sample RNA fragments (purple) washed over DNA probe array (green)

so no match is made

Sample RNA fragments (purple) hybridized to DNA probe array (green)

*The feature will now fluoresce

GeneChip® vs. Spotted Arrays

Affymetrix GeneChip[®] Arrays use oligonucleotides
 Oligos are built on a solid support

- Spotted arrays utilize nucleic acids made in solution
 - Solutions are then "spotted" onto a solid support
 - Competitive Hybridization

Wafer Prep

Cartridge Assembly

Photolithography

Wafer Prep

Cartridge Assembly

Photolithography

Wafer Prep

Cartridge Assembly

Photolithography

Wafer Prep

Cartridge Assembly

Photolithography

Photolithographic Synthesis

Photolithography

Photolithographic Synthesis

Photolithographic Synthesis

Combinatorial Synthesis

Any N-mer can be synthesized in 4 x N steps

Applications of Gene Expression

- Basic Research
- Cell Cycle
- Signaling Pathways
- Regulation of cell differentiation
- Genetic Basis of Disease
- Genetic changes in cancer; classification
- Metabolic diseases
- Aging-related biological pathologies
- Immune system pathologies
- Infectious diseases
- Target Discovery and Drug Development
- Analyze disease models to discover drug targets
- Profile drug candidates using expression data
- Analyze drug toxicity in various model systems

GeneChip[®] Array Advantages

 Multiple Indicators for the Same Target Ensures:

- Specificity
- Quantitative accuracy
- Low false positive rate
- High sensitivity

GeneChip[®] Expression Analysis Hybridization and Staining

Specificity

Detecting Change in Gene Expression Yeast grown in different conditions

Rich Medium

Minimal Medium

Wodicka, L., et al. 1997. Nature Biotechnology 15:1359-1387.

Genes	a = RPL2A	d = VAP1
	b = TIP1	e = YBR147W
	c = BAP2	f = SUP46

GeneChip[®] **Probe Nomenclature**

GeneChip[®] Array Advantages

Specific Hybridization

Non-specific/Cross Hybridization

25-mer PM-MM Probe Pairs Offer Increased Specificity

Discrimination between target and stray signal at low (<8pM) target concentrations facilitated by the use of MM probes.

Positioning of primer probes can be important

Images of Hybridized Probe Arrays

Over 500,000 different probes complementary to genetic information of interest

Sensitivity vs. Specificity

Sensitivity

- Identifying low abundance transcripts
- Tolerate some miscalls to achieve greater sensitivity
- Avoid false negatives
- Specificity
 - Accuracy of detection
 - Tolerate missing some calls to achieve accuracy
 - Avoid false positives

Independent cell growth and prep

Sample 1

Signal Intensities: 1 13,400 2 1,280 3 1 (absent) 4 1,840 5 1,700 Sample 2

Signal Intensities: 1 11,670 2 1,250 3 9 (absent) 4 2,010 5 1,450

Same sample, different arrays

Sample 1

Sample 1

Signal Intensities:	13,400
	1,280
	1 (absent)
	1,840
	1,700

Signal Intensities: 13,090 1,250 10 (absent) 1,750 1,430

Sources of Variability

Biology
The main source of variability

Sample preparation

 Technical variability depends on method and operator

Probe array analysis

 Standardized; relatively little variability

Data analysis
Increased Expression

Decreased Expression

GeneChip[®] System Work Flow

Two dye microarrays....

Two dye microarrays....

.

Genes (ranked in descending order by mean log₂ Cy3/Cy5 ratios of a pair of split-control hybridizations)

Environmental Health Perspectives • VOLUME 112 | NUMBER 4 | March 2004

- Variation in quantum yield of fluorophores
- Variation in the incorporation efficiency
- Differential dye effects on hybridization

GeneChip Expression Analysis

Absolute Analysis

Detection (qualitative)Signal (quantitative)

Comparison Analysis

Change (qualitative) Signal Log Ratio (quant.)

Genotyping or Gene Expression Monitoring

Gene Expression: How much of which, when?

GeneChip[®] Mapping 10K Probe Design

SNP 0 Position G / A TAGCCATCGGTA N GTA C TCAATGATCAGCT

ATCGGTAGCCAT C ATCGGTAGCCAT G ATCGGTAGCCAT T ATCGGTAGCCAT A

CAT G AGTTACTA PM Allele A CAT G AGTTACTA MM Allele A

CAT G AGTTACTA F CAT G AGTTACTA

PM Allele **B** MM Allele **B**

Single nucleotide polymorphisms: aging and diseases

B Bessenyei ¹, M Márka, L Urbán, M Zeher, I Semsei

Affiliations + expand

PMID: 15547317 DOI: 10.1007/s10522-004-2567-y

Abstract

Differences of more than 3 million nucleotides can bee seen comparing the genomes of two individuals as a result of single nucleotide polymorphism (SNP). More and more SNPs can be identified and it seems that these alterations are behind of several biological phenomena. Personal differences in these nucleotides result for example in elevated disease susceptibilities, that is, certain nucleotides are more frequent in patients suffering from different diseases comparing to the healthy population. SNPs may cause substantial alterations in the cells, e.g. the enzyme activity of the respective gene changes, but in other cases the effects of the SNPs are not so pronounced. Later results indicate that SNPs can be rendered to individuals living a longer life than the average. Perhaps these results will not directly lead to the lengthening of the maximal life span; however, genes that play an important role in the aging process could be identified. In this respect SNPs are important factors in determining the information level of the cells of individuals which determines the maximal life span (I. Semsei On the nature of aging. Mech. Ageing Dev. 2000; 117: 93-108), in turn SNP is one of the factors that determine the aging process. Since there are certain age-related diseases, the discovery and the description of the SNPs as a function of age and diseases may result in a better understanding of the common roots of aging and those diseases.

Heart disease

Heart disease, in SNPedia as well as for the entry in Wikipedia, is a catch-all term including medical classifications such as coronary artery disease, myocardial infarction, atherosclerosis, etc. Heart disease overall is the #1 cause of death in developed countries, typically accounting for up to 40% of all deaths.

Many SNPs have been associated with increased risk for one or more types of heart disease. Before listing many of them, though, it is worth emphasizing that the risks associated with these SNPs add "relatively little to the current capacity of traditional, non-genetic risk factors to identify individuals with a high propensity to develop heart disease"[1]. This is generally true of most SNPs associated with other diseases as well.

SNPs and genes associated with altered risk for heart disease include the following:

- The most highly replicated associations to heart disease have been to SNPs in the chromosome 9p21 region. SNPs in this region include:
 - rs2383206
 - rs10757278
 - rs2383207
 - rs10757274

Heart disease

Heart disease, in SNPedia as well as for the entry in Wikipedia, is a catch-all term including medical classifications such as coronary artery disease, myocardial infarction, atherosclerosis, etc. Heart disease overall is the #1 cause of death in developed countries, typically accounting for up to 40% of all deaths.

Many SNPs have been associated with increased risk for one or more types of heart disease. Before listing many of them, though, it is worth emphasizing that the risks associated with these SNPs add "relatively little to the current capacity of traditional, non-genetic risk factors to identify individuals with a high propensity to develop heart disease" [1]. This is generally true of most SNPs associated with other diseases as well.

SNPs and genes associated with altered risk for heart disease include the following:

- The most highly replicated associations to heart disease have been to SNPs in the chromosome 9p21 region. SNPs in this region include:
 - rs2383206
 - rs10757278
 - rs2383207
 - rs10757274

Heart disease

Heart disease, in SNPedia as well as for the entry in Wikipedia, is a catch-all term including medical classifications such as coronary artery disease, myocardial infarction, atherosclerosis, etc. Heart disease overall is the #1 cause of death in developed countries, typically accounting for up to 40% of all deats.

Many SNPs have been associated with increased risk for one or more types of heart disease. Before listing many of them, though, it is worth emphasizing that the risks associated with these SNPs add 'relatively little to the current capacity of traditional, non-genetic risk factors to identify individuals with a high propensity to develop heart disease" []. This is generally true of most SNPs associated with other diseases as well.

SNPs and genes associated with altered risk for heart disease include the following

- The most highly replicated associations to heart disease have been to SNPs in the chromosome 9p21 region. SNPs in this region include:
 rs2383206
- rs10757278
- rs2383207
- rs10757274
- 1010/072/1

rs2383206

rs10757274 and rs2383206 can significantly increase the risk of heart disease[1]. About one in every four Caucasians are thought to carry the variants, and their risk of coronary heart disease is increased by 30 to 40%. rs10757278 in the same region has been linked to diabetes [2]. The chromosomal region where these SNPs are located is 9p21, and has no known genes.

a blog post about investigating rs10757274 and rs2383206

[PMID 18048766] This SNP was also associated with increased risk for coronary artery disease in a Korean population.

[PMID 18066490] Also found to be significant in a study of 416 Italian myocardial infarction patients.

A study of 1,000+ patients with early-onset angiographic coronary artery disease (CAD) concluded that **rs2383206**(G) was associated with an adjusted odds ratio of 1.39 (CI: 1.05-1.85) for (A;G) heterozygotes and 1.73 (CI: 1.26-2.37) for (G;G) homozygotes. This SNP alone accounted for 21% of the population attributable fraction and was independent of traditional risk factors, myocardial infarction risk, and the extent of disease.[19033013?dopt=Abstract PMID 19033013]

[PMID 19559344] Genetic variants on chromosome 9p21 and ischemic stroke in Chinese

	Orientation plus					
	Stabilize	Stabilized plus				
	Geno + Mag + Summary					
	(A;A)		normal			
	(A;G)	2	1.4x increased risk for heart disease			
	(G;G)	3	1.7x increased risk for heart disease			
	Reference		RCh38 38.1/141			
Chromosome 9			9			
	Position		22115027			
	Gene		CDKN2B-AS1			
is a		S	snp			
is		m	mentioned by			
	dbSNP		rs2383206			
dbSNP (classic)		rs	rs2383206			

Heart disease

Heart disease, in SNPedia as well as for the entry in Wikipedia, is a catch-all term including medical classifications such as coronary artery disease, myocardial infarction, atherosclerosis, etc. Heart disease overall is the #1 cause of death in developed countries, typically accounting for up to 40% of all deats.

Many SNPs have been associated with increased risk for one or more types of heart disease. Before listing many of them, though, it is worth emphasizing that the risks associated with these SNPs add 'relatively little to the current capacity of traditional, non-genetic risk factors to identify individuals with a high propensity to develop heart disease" []. This is generally true of most SNPs associated with other diseases as well.

SNPs and genes associated with altered risk for heart disease include the following

- The most highly replicated associations to heart disease have been to SNPs in the chromosome 9p21 region. SNPs in this region include:
 rs2383206
- rs10757278
- rs2383207
- 132303207
- rs10757274

rs2383206

rs10757274 and **rs2383206** can significantly increase the risk of heart disease[1]. About one in every four Caucasians are thought to carry the variants, and their risk of coronary heart disease is increased by 30 to 40%. rs10757278 in the same region has been linked to diabetes [2]. The chromosomal region where these SNPs are located is 9p21, and has no known genes.

a blog post about investigating rs10757274 and rs2383206

[PMID 18048766] This SNP was also associated with increased risk for coronary artery disease in a Korean population.

[PMID 18066490] Also found to be significant in a study of 416 Italian myocardial infarction patients.

A study of 1,000+ patients with early-onset angiographic coronary artery disease (CAD) concluded that **rs2383206**(G) was associated with an adjusted odds ratio of 1.39 (CI: 1.05-1.85) for (A;G) heterozygotes and 1.73 (CI: 1.26-2.37) for (G;G) homozygotes. This SNP alone accounted for 21% of the population attributable fraction and was independent of traditional risk factors, myocardial infarction risk, and the extent of disease.[19033013?dopt=Abstract PMID 19033013]

[PMID 19559344] Genetic variants on chromosome 9p21 and ischemic stroke in Chinese

Orientation plus					
Geno + M	Geno + Mag + Summary +				
(A;A)		normal			
(A;G) 2	2	1.4x increased risk for heart disease			
(G;G) 3	3	1.7x increased risk for heart disease			
Reference	e GR(Ch38 38.1/141			
Chromose	Chromosome 9				
Position	221	22115027			
Gene	CD	CDKN2B-AS1			
is a	snp	snp			
is	mer	mentioned by			
dbSNP	rs2	rs2383206			
dbSNP (classic)	rs2	rs2383206			

GeneChip Mapping 10K Assay

A single-primer, A single-amplification, and A cost-effective assay...

... for simultaneously Genotyping

GeneChip[®] Mapping 10K Hybridization Patterns

